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COVER ILLUSTRATION: The catalytic binding site of the enzyme purine nucleoside phosphorylase, which
plays a key role in immune function, is shown in gray as a space-filling model. An inhibitor of the enzyme is
shown in white. A tight fit between the enzyme and the inhibitor is required for binding and inhibitory activity,
and a goal of structure-based drug discovery is the design of inhibitors that are geometrically (and chemically)
complementary to an enzyme binding site.

The figure was computer generated and resulted from a study that involved calculating geometries of
potential inhibitors "docked" in the enzyme binding site (Montgomery et al., 1993). The study involved energy
minimization and Monte Carlo-like conformational searching using the MacroModel computational chemistry
software (Mohamadi et al., 1990). Such a computationally intensive task could not have been carried out 10
years ago and was an integral part of a structure-based drug design effort (Montgomery, 1993; see also Bugg et
al., 1993).

Figure courtesy of W. Guida, Pharmaceuticals Division, Ciba-Geigy Corporation.

References
Bugg, C.E., W.M. Carson, and J.A. Montgomery, 1993, Drugs by design, Scientific American 269:92-98.

Mohamadi, F., N.G.J. Richards, W.C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T.
Hendrickson, and W.C. Still, 1990, MacroModel—An integrated software system for modeling organic and
bioorganic molecules using molecular mechanics, J. Comput. Chem. 11:440-467.

Montgomery, J.A., 1993, Purine nucleoside phosphorylase: A target for drug design, Medicinal Research
Reviews 13:209-228.

Montgomery, J.A., S. Niwas, J.D. Rose, J.A. Secrist, Y.S. Babu, C.E. Bugg, M.D. Erion, W.C. Guida, and
S.E. Ealick, 1993, Structure-based design of inhibitors of purine nucleoside phosphorylase 1. 9-(arylmethyl)
derivatives of 9-deazaguanine, J. Med. Chem. 36:55-69.




Committee on Mathematical Challenges from
Computational Chemistry

FRANK H. STILLINGER, AT&T Bell Laboratories, Chair

HANS C. ANDERSEN, Stanford University

Louis AUSLANDER, City University of New York

DAVID L. BEVERIDGE, Wesleyan University

ERNEST R. DAVIDSON, Indiana University

WAYNE C. GUIDA, Ciba-Geigy Corporation

PETER A. KOLLMAN, University of California at San Francisco
WILLIAM A. LESTER, JR., University of California at Berkeley
YVONNE C. MARTIN, Abbott Laboratories

GEORGE C. SCHATZ, Northwestern University

TAMAR SCHLICK, New York University and Howard Hughes Medical Institute
L. RIDGWAY ScoTT, University of Houston

DEWITT L. SUMNERS, Florida State University

PETER G. WOLYNES, University of Illinois at Urbana-Champaign

Board on Chemical Sciences and Technology Liaison
KENDALL N. HOUK, University of California at Los Angeles

Scot1T T. WEIDMAN, Study Director
TANA L. SPENCER, Project Assistant

ii




Board on Mathematical Sciences

AVNER FRIEDMAN, University of Minnesota, Chair
JEROME SACKS, National Institute of Statistical Sciences, Vice Chair
Louls AUSLANDER, City University of New York
HYMAN BAss, Columbia University

PETER E. CASTRO, Eastman Kodak Company

R. DUNCAN LUCE, University of California at Irvine
PAUL S. MUHLY, University of Iowa

GEORGE NEMHAUSER, Georgia Institute of Technology
ANIL NERODE, Cornell University

INGRAM OLKIN, Stanford University

RONALD PEIERLS, Brookhaven National Laboratory
DONALD ST. P. RICHARDS, University of Virginia
MARY F. WHEELER, Rice University

ROBERT J. ZIMMER, University of Chicago

JON KETTENRING, Bellcore, Ex Officio Member

JOHN R. TUCKER, Director

JACK ALEXANDER, Program Officer

RUTH E. O’BRIEN, Staff Associate

BARBARA W. WRIGHT, Administrative Associate

iv




Board on Chemical Sciences and Technology

ROYCE C. MURRAY, University of North Carolina, Co-Chair

EDWIN P. PRZYBYLOWICZ, Rochester Institute of Technology, Co-Chair
PAUL S. ANDERSON, The Du Pont Merck Pharmaceutical Company
DAVID C. BONNER, Premix, Inc.

PHILIP H. BRODSKY, Monsanto Company

MARVIN H. CARUTHERS, University of Colorado

GREGORY R. CHOPPIN, Florida State University

FRED P. CORSON, Dow Chemical Company

MOSTAFA EL-SAYED, Georgia Institute of Technology

JOANNA S. FOWLER, Brookhaven National Laboratory

BERTRAM O. FRASER-REID, Duke University

JUDITH C. GIORDAN, Henkel Corporation

JOSEPH.G. GORDON II, IBM Almaden Research Center

L. Lours HEGEDUS, W.R. Grace & Co.

GEORGE J. HIRASAKI, Rice University

DOUGLAS A. LAUFFENBERGER, Massachusetts Institute of Technology
MARSHA I. LESTER, University of Pennsylvania

W. HARMON RAY, University of Wisconsin

GABOR A. SOMORJAI, University of California at Berkeley

JOHN J. WISE, Mobil Research and Development Corporation

DoOUGLAS J. RABER, Director

MARIA P. JONES, Administrative Secretary
SYBIL A. PAIGE, Administrative Associate
TANA L. SPENCER, Senior Secretary

ScorT T. WEIDMAN, Senior Program Officer
TAMAE M. WONG, Program Officer




Commission on Physical Sciences, Mathematics, and Applications

RICHARD N. ZARE, Stanford University, Chair

RICHARD S. NICHOLSON, American Association for the Advancement of Science, Vice Chair
STEPHEN L. ADLER, Institute for Advanced Study

SYLVIA T. CEYER, Massachusetts Institute of Technology

SusaN L. GRAHAM, University of California at Berkeley

ROBERT J. HERMANN, United Technologies Corporation

RHONDA J. HUGHES, Bryn Mawr College

SHIRLEY A. JACKSON, Rutgers University

KENNETH I. KELLERMANN, National Radio Astronomy Observatory
HANS MARK, University of Texas at Austin

THOMAS A. PRINCE, California Institute of Technology

JEROME SACKS, National Institute of Statistical Sciences

L.E. SCRIVEN, University of Minnesota

A. RICHARD SEEBASS III, University of Colorado

LEON T. SILVER, California Institute of Technology

CHARLES P. SLICHTER, University of Illinois at Urbana-Champaign
ALVIN W. TRIVELPIECE, Oak Ridge National Laboratory

SHMUEL WINOGRAD, IBM T.J. Watson Research Center

CHARLES A. ZRAKET, MITRE Corporation (retired)

NORMAN METZGER, Executive Director

vi




CONTENTS

EXECUTIVE SUMMARY . . . . o e e e e e e e e e e e e
OVEIVIBW . o v o e e e e e e e e e e
Conclusions and Recommendations . . . . .. . . .« . i ittt e

ReferenCe . . . . o o e e e e e e

1 INTRODUCTION . . . . e s e e e e e e s e
ReferencCes . . . . o o e e e e e e e e e

2 THE EMERGENCE OF COMPUTATIONAL CHEMISTRY . ....................

3 EXAMPLES OF CONSTRUCTIVE CROSS-FERTILIZATION BETWEEN THE
MATHEMATICAL SCIENCES AND CHEMISTRY . ....... ... ... .. .. . . ...

Use of Statistics to Predict the Biological Potency of Molecules Later Marketed as
New Drugs and Agricultural Chemicals . . . ............... .. ... ... ... ...
R OIENCES . o v o i o e e e
Numerical Analysis . ... ... ...
RELEIBICES & v v v v o i e it e e e e e e
Distance GEOMELIY . . o v v v v o e e e e e e e e e
R EIENCES . o o vt i e e
Mathematics and Fullerenes . . . . . .. .. ot it e
REfEIEICES . o o v i e i e it e e e e e e e e
Quasicrystals . . . . ...
RETEIEICES . v v v v o i i e e e e e e e e
Chemical TOPOIOZY . . . . . o ot i e
Combinatorics, Graph Theory, and Chemical Isomer Enumeration . ... ...........
Analysis of Molecular Spectra by Using Cayley Trees . . ... ..................
Group Theory, Topology, Geometry, and Stereochemistry . . ..................
Topology of POLYMErs . . . . . . ..ot
Knot, Links (Catenanes), and DNA . . . . . ... ... . . i e
REfEIENCES . . o o o i e e
Graph Theory . . . . ..o
Application of Graph Theory to Organizing Chemical Literature .. ..............
Application of Graph Theory to Representation of Chemical Reactions . . .. .........
RETIEIICES & o o v v v i i i e e e e e e e e e
X-Ray Crystallography . . . .. ... ..
REMATK . oot it e e e
REfEIENCES . . o v vt e e

4 MATHEMATICAL RESEARCH OPPORTUNITIES FROM
THEORETICAL/COMPUTATIONAL CHEMISTRY ......... ... ... ... .. . ...
INtrodUCHION . . . . i i e e e e e
References . ... .. o e e
Numerical Methods for Electronic Structure Theory . . . ... ... . .
The N- and V-Representability Problems . . . . ...... ... ... ... .

vii




References . ...... ... . . . ... .. 50
Melding of Quantum Mechanics with Simpler Models . ... ..................... 51
References ... .. ... . .. .. . 53
Molecular Dynamics Algorithms . . . ....... .. ... .. .. .. . ... .., 54
Enhanced Sampling . . . ... ... ... . ... 54
Numerical Methods for Solving Ordinary Differential Equations .. .............. 54
Symplectic Integrators . . . ... ... ... 54
The Time Step Problem in Molecular Dynamics . . . .. ...................... 55
Implicit Integration Schemes . .. ......... .. .. ... .. ... ... .. .., 56
Future Prospects . . ... ... ... . 57
References . ... ... .. . .. . 57
N- and V-Representability Problems in Classical Statistical Mechanics .. .............59
References . . ... ... ... .. 63
Implications of Topological Phases . . .......................... ... .... 63
Theoretical and Computational Chemistry in Space of Noninteger Dimension . . . ........ 65
References . ... ... .. . ... . 67
Multivariate Minimization in Computational Chemistry . . . ... ................... 68
Introduction . .. ... ... .. 68
Problem Classification . . .. ........ ... . ... . . . . .. . 69
The Complexity of Computational Chemistry Problems .. .................... 69
Local Optimization Methods . . .. ........ .. ... .. .. ... ... .. .. ... ..... 71
Global Optimization Methods . . . ........ .. ... .. .. ... ... .. .. ... ..... 72
Perspective . . .. .. ... L 73
References . . ... ... .. . .. 74
Locating Saddlepoints . . . .. ........ .. ... .. 71
References ... ... ... ... . .. 78
Sampling of Minima and Saddlepoints . .. ............... .. .. . ... . ... ... .. 80
Efficient Generation of Points That Satisfy Physical Constraints in a Many-Particle System . . 85
Prototypical Problem . . . .. ... ... .. ... . 85
Variations on the Prototypical Problem .. .............................. 85
Simplest Strategy . . . . ... ... 86
Metropolis Monte Carlo Method . ... ....... ... .. ... ... ... ... ........ 87
Relationship of These Problems to More General Optimization Problems . .......... 87
Molecular Diversity and Combinatorial Chemistry in Drug Discovery . .............. 87
Overview of the Drug Discovery Process . ... ... ...............u ... 87
Sources of Molecular Diversity ... .......... ... ... .. . ... . ... 88
Current Computational Approaches to Compound Selection ... ................ 89
Opportunities for Improvements in Computational Approaches to Compound Selection . . 90
References .. .. ... . ... . . . . 91
Statistical Analyses of Families of Structures .. ............................. 93
Quantum Monte Carlo Solution of the Schrodinger Equation . ... ................. 94
Variational Monte Carlo (VMC) . . . ... ... .. . . e 95
Diffusion Monte Carlo (DMC) . . . . .. .. ... . ... . . e 95
Green’s Function Monte Carlo (GFMC) . . .. ... ... ... .. .. .. ... 96
Research Opportunities . ... ... ... .. ... . . .. . 96
References . ... ... ... . . .. 96
Nonadiabatic Phenomena . . . .. ... ... ... ... ... 96
References . ... ... ... .. 99




Evaluation of Integrals with Highly Oscillatory Integrands: Quantum Dynamics

with Path Integrals . . . ... ... ... . . . . . . 99
Prototypical Problem . . . . . ... ... ... 100
Discussion of the Problem . . . . ... ... ... . .. ... 100
Stationary-Phase Monte Carlo Methods . . ............................. 101
Alternative Approaches to the Prototype Problem . .. .. .................... 102

Other Formulations and Solutions of the Basic Problem . . ................... 102
References . ... ... . e e 104

Fast Algebraic Transformation Methods . ... ....... ... ... ... . ... ........ 105
References . ... ... . e 108

5 CULTURAL ISSUES AND BARRIERS TO INTERDISCIPLINARY WORK . ........ 109
Motivation and Connections . . . . . . . .. .. . . e 109
Effects of Disciplinary Boundaries . . . .......... ... ... ... ... .. ... .. ..... 110
Effects of the Curriculum . . . .. . . . ... . e 112
Language Differences . .. ... ... ... .. . .. 112
Toward a Fruitful Collaboration . . ... ... ... ... . . .. . .. 114
References . . ... .. . . e 115

6 CONCLUSIONS AND RECOMMENDATIONS . . . ... . . e, 117
References . .. .. . .. . . e 119
AFTERWORD . . . . e e e 121
GLOSS ARY . . e e 123

ix




The National Academy of Sciences is a private, nonprofit, self-perpetuating society of
distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of
science and technology and to their use for the general welfare. Upon the authority of the charter
granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the
federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the
National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National
Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its
administration and in the selection of its members, sharing with the National Academy of Sciences the
responsibility for advising the federal government. The National Academy of Engineering also
sponsors engineering programs aimed at meeting national needs, encourages education and research,
and recognizes the superior achievements of engineers. Dr. Robert M. White is president of the
National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure
the services of eminent members of appropriate professions in the examination of policy matters
pertaining to the health of the public. The Institute acts under the responsibility given to the National
Academy of Sciences by its congressional charter to be an adviser to the federal government and,
upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I.
Shine is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to
associate the broad community of science and technology with the Academy’s purposes of furthering
knowledge and advising the federal government. Functioning in accordance with general policies
determined by the Academy, the Council has become the principal operating agency of both the
National Academy of Sciences and the National Academy of Engineering in providing services to the
government, the public, and the scientific and engineering communities. The Council is administered
jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Robert M.
White are chairman and vice chairman, respectively, of the National Research Council.




LIST OF BOXES

BOX 2.1 The Schrédinger Wave Equation . . .................... . ............ 14
BOX 2.2 Molecular Mechanics/Molecular Dynamics . ... ......................... 15
BOX 2.3 Chemist, Mathematician, or Physicist? . ................. ... .......... 16
BOX 3.1 Rational Drug Design . .. .................. S 20
BOX 3.2 Research Opportunities in Parallel Computing . . ... ...................... 22
BOX 3.3 Protein Microtutorial . . . . . ... .. ... e 24
BOX 3.4 Clique Detection . . . . . . . ... .. e 36
BOX 4.1 Electronic Phase Transitions . . ... ........... ... ... . ... . ... ..., 52
BOX 4.2 Tutorial on Statistical Mechanics and the Importance of Minima and Saddlepoints

in Condensed Matter SyStems . . . . . . . . ... e e e 60
BOX 4.3 Implications of Dynamic Chaos for Quantum Mechanical Systems . .......... ‘. .. 64
BOX 4.4 Nodal Properties of Wavefunctions . . ... .......... ... ... .. ............ 66
BOX 4.5 Automatic Differentiation . . . . ... ... ... ... ... 70
BOX 4.6 Comments on the Ambiguous Concept of "Structure" for Complex Molecules

and Macromolecules . . . . . . ... e 82
BOX 4.7 Implications of Dynamical Chaos at the Classical Level . ... ................. 84
BOX 4.8 Possibility of Intelligent Algorithms to Detect Novel Phenomena Automatically . . . . .. 90
BOX 5.1 American Chemical Society Curriculum Standards for Mathematical Course Work . . . 111
BOX 5.2 Information Sources About Theoretical/Computational Chemistry . ... .......... 113
BOX 5.3 Information Sources About the Mathematical Sciences . . . ... ............... 114

Xi




EXECUTIVE SUMMARY

Overview

Although much of its discovery process is descriptive and qualitative, chemistry is fundamentally a
quantitative science. It serves a wide range of human needs, activities, and concerns. The
mathematical sciences provide the language for quantitative science, and this language is growing in
many directions as computational science in general continues its rapid expansion. A timely
opportunity now exists to strengthen and increase the beneficial impacts of chemistry by enhancing the
interaction between chemistry and the mathematical sciences.

Computational chemistry is a natural outgrowth of theoretical chemistry, the traditional role of
which involves the creation and dissemination of a penetrating conceptual infrastructure for the
chemical sciences, particularly at the atomic and molecular levels. The mathematical sciences have
been indispensable allies and have provided vital tools for that role. Theoretical chemistry has also
sought to devise and to implement quantitative algorithms for organizing massive amounts of data
from the laboratory, and for predicting the course and extent of chemical phenomena in situations that
are difficult or even impossible to observe directly; thus, today it is difficult to classify many lines of
research as either "theoretical” or "computational." This report tends toward the term
theoretical/computational—any distinction between the two areas is rather misleading because the
subject demands both quantitative characterization and conceptual understanding.

Computational chemistry has its roots in the early attempts by theoretical physicists, beginning in
1928, to solve the Schrodinger equation using hand-cranked calculating machines. By the 1950s, with
the appearance of digital computers, serious attempts were being made to obtain highly accurate
quantitative information about the chemical behavior of molecules via numerical approximations to the
solution of the Schrodinger equation. In subsequent years, thanks to leaps in computing power and
algorithms, methods have evolved from those that were used to study 1- and 2-atom systems in 1928,
through those that were used to study 2- to 5-atom systems in 1970, to the present programs that
produce useful quantitative results for molecules with up to 10 to 20 atoms. Other chemists, whose
research can be accomplished with cruder models of the atom, have pushed this limit much higher.
For instance, simpler approximations have long been used in the molecular mechanics approach that
make possible the modeling of biological molecules with thousands of atoms.

Recent decades have witnessed a revolutionary expansion in the breadth and capability of
theoretical and computational chemistry—with a commensurate rise in optimism regarding the ability
of theoretical/computational chemistry to resolve pressing problems both of a fundamental scientific
character and of clearly practical interest. Those outside the field may not realize that
theoretical/computational chemistry, broadly defined, underpins rational drug design, contributes to
the selection and synthesis of new compounds, and guides the design of catalysts. New quantum
mechanical techniques underlie the understanding of electronic properties of materials and have
advanced the level of precision at which molecules of at least moderate size can be modeled.
Furthermore, computational chemistry software is a set of tools used increasingly by chemists of
many persuasions. These various abilities and facilities have proved to be very important to U.S.
industry, and their advancement would generate even further industrial benefits. Engaging problems
and deep challenges for mathematical scientists are posed by the needs of theoretical and
computational chemists, and the products of mathematical research in these areas could have far-
reaching ramifications.

The statement of task given to the Committee on Mathematical Challenges from Computational
Chemistry reads as follows: "The committee will investigate and report on opportunities for




EXECUTIVE SUMMARY

collaborative and synergistic research in the mathematical sciences that can accelerate progress in
theoretical and computational chemistry and their applications, and make recommendations for
promoting this research." It was clear from the outset that the study could not presume to be
exhaustive. However, it seemed realistic to strive for representative sampling of the two communities
involved and to identify instructive examples of past collaborative successes, likely prospects for
interdisciplinary synergy, and barriers to joint research that could be removed or at least lowered.

A number of fruitful collaborations between mathematical scientists and theoretical/computational
chemists have occurred in the past. Noteworthy examples include the Nobel prize-winning work of
Hauptman and Karle to advance the science of X-ray crystallography, now a basic tool; quantitative
structure-activity relationships have led to the development of at least four commercially successful
products (an antibacterial compound, two herbicides, and one fungicide); and insights into molecular
structure have been gained from mathematical results in group theory and topology.

In scanning the research needs of theoretical/computational chemistry, the committee found
opportunities for synergistic research with almost the entire mathematical sciences community, where
that term is used in its broadest sense to include core and applied mathematicians, statisticians,
operations researchers, and theoretical computer scientists. Many of the mathematical lines of
research that, if reoriented, could contribute to chemistry are already being pursued in other contexts.
The matrix in Figure ES.1 displays a subjective assessment of the depth of potential cross-fertilization
between major challenges from theoretical and computational chemistry and relevant topics in the
mathematical sciences. This matrix is based to some extent on intuition because it is an assessment of
future research opportunities, not past results. An "H" in the matrix implies an overlap that appears
clearly promising, while an "M" suggests that some synergy between the areas is likely. The absence
of an H or an M should not be taken to imply that some clever person will not find an application of
that technique to that problem at some point.

Conclusions and Recommendations

As a result of its investigations and collective evaluation of the available information, the
committee has reached the following conclusions.

e Several notable "success stories" can be identified, illustrating the value of interdisciplinary
stimulation and synergistic research collaboration involving cooperation between the mathematical
sciences and the theoretical/computational chemistry communities.

¢ Many opportunities appear to exist for further collaborations between the mathematical and
chemical sciences that could result in high-quality scholarship and research progress that would
advance national interests. The productivity of applied computational chemistry would likely be
enhanced as a result, which could be potentially significant for industry.

e Active encouragement of further collaborations is warranted because it would likely result in an
acceleration of such research progress.

¢ Cultural differences between the mathematics and the chemistry communities, involving
language, training, aesthetics, and research style, have tended to act as barriers to collaboration, even
in circumstances that might otherwise suggest the benefit of cooperation.

¢ Institutional structures and reward systems in the academic community have often placed
significant difficulties in the way of collaborative research across traditional disciplinary boundaries,
which can be especially inhibiting to those in early career stages.

2
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EXECUTIVE SUMMARY

¢ Government funding agencies have for the most part made constructive efforts to identify and
fund worthy interdisciplinary and collaborative research. However, this process is still somewhat
haphazard. Agencies tend to be organized along traditional disciplinary lines, and the evaluation of
interdisciplinary proposals relies on personal contacts between program managers and on timely and
comprehensive responses from what is typically a small pool of qualified reviewers. The time lapse
involved in the proposal evaluation process thus has often been anomalously long.

¢ To a large extent, both mathematical scientists and theoretical/computational chemists are
relatively unaware of the most exciting recent advances in each others’ fields. Consequently both
groups tend to be insensitive to the opportunities for interdisciplinary cross-fertilization that could
produce intellectual novelty and productivity enhancements on both sides.

¢ The system of prizes and awards administered by the mathematical sciences and chemistry
professional societies is currently not geared to recognize and reward interdisciplinary collaborative
research advances.

¢ The national environment—including Congress, funding agencies, and the professional societies
(see, e.g., Joint Policy Board for Mathematics, 1994)—has become perceptibly more conducive to
encouraging and supporting interdisciplinary and collaborative research, particularly as it may concern
industrial innovation and productivity. Government agencies in particular are currently in a mood to
actively encourage joint industrial-academic research, even though proprietary rights barriers to free
collaboration are recognized to exist.

¢ The overwhelming volume of specialized technical literature aggravates the communication
problems between fields and occasionally leads to wasted effort, redundancy, and rediscovery. It
appears that well-researched and well-written review articles spanning normally disconnected
specialties in the mathematical sciences and in theoretical/computational chemistry represent a
disproportionately small fraction of the technical literature, in spite of the fact that they can eliminate
redundant effort.

In response to these conclusions and to the insights gained from its study, the committee makes the
following recommendations:

Undergraduate Education. The best way to attract scientists to interdisciplinary work is to get them
interested as undergraduates. It is recommended that universities encourage undergraduate
interdisciplinary research courses, seminars, and summer programs.

Graduate Education. Departments in the mathematical and chemical sciences should encourage
graduate degrees (both M.S. and Ph.D.) that involve dual (mathematics and chemistry) mentoring.
Dual mentoring activity between chemistry and physics and chemistry and biology has been successful
in many universities. The committee recommends that mathematics graduate students consider a
minor in chemistry instead of a minor in an area of mathematics related to their research specialty.
Theoretical and computational chemistry graduate students should consider a minor in mathematics or,
alternatively, take a core of mathematical courses appropriate to their interest (perhaps in the
framework of a special "interdisciplinary track").

Faculty Interaction. Mathematics and chemistry departments should on occasion invite a person
from the other area to speak in a research seminar or a colloquium. Lists of speakers of potential
interest to industry should be circulated to local industrial laboratories, and vice versa.




EXECUTIVE SUMMARY

Interdisciplinary Research. The committee recommends that mathematics and chemistry
departments encourage and value individual and collaborative research that is at the interface of the
two disciplines. Such work has the potential for significant intellectual impact on computational
chemistry, and hence on the future evolution of chemical research and its applications to problems of
importance in our society.

Professional Societies. Professional meetings in mathematics and chemistry—for instance, those of
the American Mathematical Society (AMS), American Chemical Society, Society for Industrial and
Applied Mathematics (SIAM), and the Chemical Physics Division of the American Physical
Society—would benefit from talks very much like the seminar and colloquium talks described in the
recommendation for faculty interaction above, from shorter presentations in special sessions, and from
panel discussions. There are already some promising moves in this direction as reflected, for
example, by recent AMS sessions on mathematics and molecular biology or SIAM sessions on
molecular chemistry problems and optimization. These sessions at national and regional professional
society meetings could ultimately lead to focused interdisciplinary meetings.

Prizes and Awards. The committee recommends that professional societies in the mathematical and
chemical sciences examine the feasibility of establishing awards and named lectureships for work at
the mathematics-chemistry interface. High-level public recognition by peers would be a major step
toward breaking down interdisciplinary barriers.

Expository Articles and Books. Professional journals in mathematics and chemistry could enhance
their quality, appeal, and influence by publishing expository articles on work at the mathematics-
chemistry interface. There is a shortage of books written for someone who is mathematically
(chemically) sophisticated and desires fairly precise but nonrigorous chemical (mathematical)
explanations.

Interdisciplinary and Industrial Postdoctorals and Sabbaticals. Mathematics and chemistry
departments should encourage postdoctoral and faculty sabbatical study at the mathematics-chemistry
interface. The committee recommends that the chemical software, pharmaceutical, and chemical
industries expand their use of mathematics postdoctorals and faculty on sabbatical leave, and increase
their cooperation with and utilization of existing National Science Foundation (NSF) programs such as
the University-Industry Cooperative Research Program in the Mathematical Sciences; Industry-Based
Graduate Research Assistantships and Cooperative Fellowships in the Mathematical Sciences;
Mathematical Sciences University-Industry Postdoctoral Research Fellowships; and Mathematical
Sciences University-Industry Senior Research Fellowships. Another opportunity in this regard exists
at the Institute for Mathematics and Its Applications at the University of Minnesota, which has an
active industrial postdoctoral research program with the aim of broadening the perspectives of recent
doctoral recipients in the mathematical sciences and preparing them for research careers involving
industrial interaction.

Reference
Joint Policy Board for Mathematics, 1994, Recognition and Rewards in the Mathematical Sciences, American
Mathematical Society, Providence, R.I.




1
INTRODUCTION

Although much of its discovery process is descriptive and qualitative, chemistry is fundamentally a
quantitative science. It serves a wide range of human needs, activities, and concerns, a theme
forcefully documented in the comprehensive Pimentel report, Opportunities in Chemistry (National
Research Council, 1985), which presented the status of chemistry as of 1985. The mathematical
sciences provide the language for quantitative science, and this language is growing in many
directions as computational science in general continues its rapid expansion. A timely opportunity
now exists to strengthen and increase the beneficial impacts of chemistry by enhancing the interaction
between chemistry and the mathematical sciences.

Computational chemistry is a natural outgrowth of theoretical chemistry, the traditional role of
which involves the creation and dissemination of a penetrating conceptual infrastructure for the
chemical sciences, particularly at the atomic and molecular levels. The mathematical sciences have
been indispensable allies and have provided vital tools for that role. Theoretical chemistry has also
sought to devise and to implement quantitative algorithms for organizing massive amounts of data
from the laboratory, and for predicting the course and extent of chemical phenomena in situations that
are difficult or even impossible to observe directly; thus, today it is difficult to classify many lines of
research as either "theoretical” or "computational." This report tends toward the term theoretical/
computational—any distinction between the two areas is rather misleading because the subject
demands both quantitative characterization and conceptual understanding.

Even before the advent of computers as a major component in physical science research, the
theoretical tradition in chemistry had accumulated a substantial membership: in its 1966 report entitled
Theoretical Chemistry, A Current Review, the Westheimer committee estimated that in 1964,
approximately 200 theoretical chemists with faculty appointments in graduate-degree-granting
institutions could be identified in the United States (National Research Council, 1966, p. 3).

The subsequent three decades have witnessed a revolutionary expansion in the breadth and
capability of theoretical and computational chemistry, as well as in its population. These changes, of
course, have been driven by the rapid evolution of computers and by their widespread availability in
the scientific community. The resulting impact has been enormous and has expanded the range of
research activity in theoretical/computational chemistry to encompass the entire spectrum from purely
analytical theory, through simulational study of mathematically well-defined models, to the adroit
development of powerful and general computational algorithms. Indeed, for the purposes of this
document, the committee takes the viewpoint that theoretical/computational chemistry constitutes a
seamless continuum of research activities that deserves to be assessed as a whole.

If the mailing lists of theoretical chemistry conferences can be taken as evidence, the current
number of theoretical/computational chemists working in the United States has grown to
approximately 1000 (John C. Tully, Chairman of 1993 International Conference on Theoretical
Chemistry, personal communication). To some extent, this expansion in population has occurred in
the academic community. But more significantly, it represents a major growth in the industrial and
government sectors, and reflects an increasing realization that theoretical and computational chemistry
contributes to the national economic and security welfare. The last three decades have exhibited a
general rise in expectations and optimism surrounding the ability of theoretical/computational
chemistry to resolve pressing problems both of fundamental scientific character and of clear practical
application. The historical record of these expectations can be seen in reports, for example, of
workshops and studies held during the early days of the "supercomputer era” (National Research




Council, 1974, 1975, 1976; Schatz, 1984; Berne, 1985). Not surprisingly, physics and engineering
manifested similar experiences at the same time (National Science Foundation (NSF) Advisory
Committee for Physics, 1981; Lax, 1982; NSF Working Group on Computers for Research, 1983;
National Research Council, 1984).

The pervasive significance and widespread applicability of theoretical and computational chemistry
may not always be immediately obvious to those not frequently concerned with this activity.
Nevertheless, it is central to rational drug design, it contributes to the selection and synthesis of new
materials, and it guides the design of catalysts. New quantum mechanical techniques underlie the
understanding of electronic properties of materials and have advanced the level of precision at which
molecules of at least moderate size can be modeled. Furthermore, computational chemistry software
is a set of tools used increasingly by chemists of many persuasions. These various abilities and
facilities have proved to be very important to American industry, and their advancement would
generate even further industrial benefits. Engaging problems and deep challenges for mathematical
scientists are posed by the needs of theoretical and computational chemists, and the products of
mathematical research in these areas can have far-reaching ramifications.

The marked growth of theoretical/computational chemistry inevitably has involved a substantial
national investment of skilled human resources and of expensive computing resources (both hardware
and software). Both of these types of commodities are relatively scarce and are subject to competition
between alternative scientific and technological disciplines. Table 1.1 shows, for instance, that
software for theoretical and computational chemistry claims much of the cpu usage on the Cray Y-MP
at the San Diego Supercomputer Center. Data from other NSF supercomputer centers reveals similar
patterns. What Table 1.1 does not show is the heavy dependence of these chemistry codes on
mathematical software such as LINPACK and EISPACK. The productivity of these computational
resources, broadly construed, must be an issue for continual analysis and informed action by
policymakers. In particular, the strong mathematical flavor of theoretical/computational chemistry
leads to a natural examination of the efficacy of links between the mathematical and the chemical
sciences, and to the past, present, and future roles of interdisciplinary research at the interface
between these subjects. These issues constitute basic concerns for the present study.

The 14 chemists, biochemists, and mathematical scientists from industry, government, and
academia who attended a 1991 workshop at the National Research Council (NRC) decided that the
interface of the mathematical sciences and theoretical/computational chemistry was an area that
deserved encouragement, and that a fuller study of the issues was warranted. Subsequently, the
Board on Mathematical Sciences and the Board on Chemical Sciences and Technology of the NRC
jointly proposed a study to identify research opportunities for the mathematical sciences relevant to
computational chemistry, with the goal of engaging the talent of more mathematical scientists in the
problems of computational chemistry, which should produce advances of benefit to both the
mathematical and the chemical sciences. The phrase "computational chemistry" was to be interpreted
to include those areas related to molecular structure and its determination, broadly defined; it was felt
that there was less need to promote greater participation by mathematical scientists in the areas of
computational chemistry on the macroscopic scale—including such topics as reaction/diffusion
modeling and most of chemical engineering. On securing approval and funding for this study, a
Committee on Mathematical Challenges from Computational Chemistry was selected, with its first
meeting held in Washington, D.C. on March 29-30, 1994. Two subsequent meetings took place:
June 9-10, 1994, in Washington, D.C., and September 9-11, 1994, in Woods Hole, Massachusetts.

The statement of task given to the Committee on Mathematical Challenges from Computational
Chemistry reads as follows: "The committee will investigate and report on opportunities for
collaborative and synergistic research in the mathematical sciences that can accelerate progress in
theoretical and computational chemistry and their applications, and make recommendations for
promoting this research.” It was clear from the outset that the study could not presume to be



TABLE 1.1 Top ten applications in terms of percentage of CRAY C90 usage at the San Diego
Supercomputer Center for the period December 1, 1993, to August 17, 1994

Time Used (%) | Application Description
7.1 ESP Molecular dynamics
6.7 Gaussian Quantum chemistry
5.4 AMBER Molecular dynamics
2.6 TREESPH Galactic dynamics
2.1 GAMESS Quantum chemistry
2.0 ARGOS Molecular dynamics
1.5 CGCM Coupled ocean-atmosphere global climate
model
1.5 DMOL Quantum chemistry
1.3 COULMETL Materials science
1.2 DIEL Materials science

SOURCE: Wayne Pfeiffer, San Diego Supercomputer Center, personal communication.

exhaustive. However, it seemed realistic to strive for representative sampling of the two communities
involved and to identify instructive examples of past collaborative successes, likely prospects for
interdisciplinary synergy, and barriers to joint research that could be removed or at least lowered.

In order to supplement its own breadth of expertise, as well as to reach out to the mathematical
sciences community, the committee invited guests to its first two meetings to learn from their
perspectives. At its first meeting, the committee engaged in a lengthy discussion with Richard
Herman, chair of the Joint Policy Board for Mathematics, learning about the range of attitudes in that
community toward interdisciplinary research and about efforts to adjust the community’s priorities on
many fronts (Joint Policy Board for Mathematics, 1994). At its second meeting, the committee
invited an optimization researcher (Margaret Wright, of AT&T Bell Laboratories, incoming president
of the Society for Industrial and Applied Mathematics), a statistician (Douglas Simpson of the
University of Illinois at Urbana-Champaign), and a researcher in computational fluid dynamics (David
Keyes from the National Aeronautics and Space Administration’s Langley Research Center). These
guests were invaluable, both for their insights about interdisciplinary research opportunities and for
their perspectives on how the committee might influence the mathematical sciences community.

In scanning the research needs of theoretical/computational chemistry, the committee found
opportunities for synergistic research with almost the entire mathematical sciences community, where
that term is used in its broadest sense to include core and applied mathematicians, statisticians,
operations researchers, and theoretical computer scientists in academe, government laboratories, and
industry. The common denominator shared by mathematical scientists who have contributed or could
contribute to progress in chemistry is not a particular background; rather, it is a willingness to truly
collaborate.

Readers may wish to note that two other recently issued reports have a strong bearing on matters




considered herein. The NRC has completed a parallel study entitled Mathematical Research in
Materials Science, which examines many of the same kinds of prospects, barriers, and cures discussed
below, although some key distinctions become clear (National Research Council, 1994). The present
report gives a somewhat heavier emphasis to biological applications of computational chemistry to
avoid excessive overlap with that earlier report. The second is Recognition and Rewards in the
Mathematical Sciences by a committee of the Joint Policy Board for Mathematics (1994), the
recommendations of which are consistent with those contained herein.

The committee believes that this report has relevance and potentially valuable suggestions for a
wide range of readers. Several important target audiences and the kinds of benefits they might expect
to derive are the following:

1. Graduate departments in the mathematical and chemical sciences could glean suggestions for
promising research directions for graduate students and young scientists, ideas about how to foster
interdisciplinary collaborations, and insight into new types of job opportunities that may appear in the
future.

2. Federal and private agencies that fund research in the mathematical and chemical
sciences—including federal policymakers involved in the high-performance computing and
communications, materials science, and biotechnology initiatives—can find suggested topics that
provide links between the fields, high-priority research topics at the interface, and suggestions for
fostering collaborations.

3. Selected industrial and government research and development laboratories can learn of ways in
which research from the mathematical sciences could be used to improve the productivity of
theoretical and computational chemists.

4. Developers of software and hardware for computational chemistry can gain more insight into
the role that the mathematical sciences could play.

5. Selected individual researchers can find inspiration and background for promising research
directions (especially for graduate students and young researchers), ways in which their existing lines
of research may have parallels or applications in another field, and suggestions for initiating
collaborations.

Chapter 2 of this report covers some history of computational chemistry for the nonspecialist,
while Chapter 3 illustrates the fruits of some past successful cross-fertilization between mathematical
scientists and computational/theoretical chemists. In Chapter 4 the committee has assembled a
representative, but not exhaustive, survey of research opportunities. Most of these are descriptions of
important open problems in computational/theoretical chemistry that could gain much from the efforts
of innovative mathematical scientists, written so as to be accessible introductions to the nonspecialist.
Chapter 5 is an assessment, necessarily subjective, of cultural differences that must be overcome if
collaborative work is to be encouraged between the mathematical and the chemical communities.
Finally, the report ends with a brief list of conclusions and recommendations that, if followed, could
promote accelerated progress at this interface. Recognizing that bothersome language issues can
inhibit prospects for collaborative research at the interface between distinctive disciplines, the
committee has attempted throughout to maintain an accessible style, in part by using illustrative
boxes, and has included at the end of the report a glossary of technical terms that may be familiar to
only a subset of the target audiences listed above.
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2
THE EMERGENCE OF COMPUTATIONAL CHEMISTRY

Computational chemistry has its roots in the early attempts by theoretical physicists, beginning in
1928, to solve the Schrddinger equation (see Box 2.1) using hand-cranked calculating machines.
These calculations verified that solutions to the Schrodinger equation quantitatively reproduced
experimentally observed features of simple systems such as the helium atom and the hydrogen
molecule. Approximate solutions for larger systems and exact solutions to simple model problems
allowed chemists and physicists to make qualitative explanations of spectra, structure, and reactivity
of all types of matter.

During the Second World War, electronic computers were invented, and in the decade after the
war these became available for general use by scientists. At the same time, physicists generally
became more interested in nuclear structure and lost interest in the details of molecular structure and
spectra. Hence, beginning in the mid-1950s, a new discipline was developed, primarily by chemists,
in which serious attempts were made to obtain quantitative information about the behavior of
molecules via numerical approximations to the solution of the Schrodinger equation, obtained by using
a digital computer. The present success of this field has come largely from the enormous increase in
speed, and decrease in cost, of computers, with significant improvements also attributable to many
developments in algorithms and methodology. During the 1960s, three major developments in
algorithms and methodology made quantum chemistry a useful tool: computationally feasible, accurate
basis sets were developed; reasonably accurate approximate solutions to the electron correlation
problem were demonstrated; and formulas for analytic derivatives of the energy with respect to
nuclear position were derived. These developments were incorporated into several software packages
that were made readily available to most chemists in the early 1970s, leading to an explosion in the
literature of applications of computations to chemical problems. These programs are used to predict
and explain the structure and reactivity of molecules and to complement the information obtained
from many types of spectral measurements. Refinement of the program packages has, of course,
continued, with emphasis on increased accuracy, increased size of molecules that can be studied, and
adaptation to new computer hardware. The present methods have evolved from those that were used
to study 1- and 2-atom systems in 1928 through those that were used to study 2- to 5-atom systems in
1970, to the present programs that produce useful quantitative results for molecules. with up to 10 to
20 atoms. Much of the current research in new methods is aimed at developing methods that are
feasible for even larger molecules.

A classic example of the power of the theoretical/computational approach is the work in the 1960s
by W. Kolos and L. Wolniewicz. Explicit r,, calculations had been introduced for the hydrogen
molecule in 1933 by James and Coolidge, and Kolos and Roothaan, working together in Mulliken’s
lab, improved these calculations in 1960. Subsequently, Kolos teamed up with Wolniewicz to author
a sequence of papers of increasing accuracy. Their results diverged from the accepted
(experimentally derived) dissociation energy of H,. When all known corrections were included,
Kolos and Wolniewicz’s best estimate of the discrepancy (in 1968) was 3.8 cm™ Thus prodded,
experimentalists reexamined the issue and in 1970 a new spectrum of better resolution and a new
assignment of the vibrational quantum numbers of the upper electronic state were published. Both of
these results were within experimental uncertainty of the best theoretical result.

While the emphasis of one aspect of computational chemistry has been on solving the many-body
electronic structure problem, another group of chemists has focused on using the resulting potential
energy surface for studying nuclear motion. This has led to a collection of programs for doing
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classical, semiclassical, and quantum calculations. Since 1980, use of these programs has become a
routine tool for modeling molecules and gas-phase chemical reactions. These computations yield
collision cross sections, both differential and integral, for elastic, inelastic, and reactive events.

These approaches require, as with transition state theory, potential energy surface(s) obtained using
quantum chemical methods of solution of the electronic Schrodinger equation. The Schrodinger
equation for nuclear motion is solved subject to a scattering boundary condition, which takes the form
of coupled differential, integro-differential, algebraic, or integral equation systems. The methods
used to solve these coupled systems of equations are drawn from the applied mathematics literature as
well as from algorithm improvements developed by computational chemists.

Meanwhile, simpler approximations have long been used by chemists to estimate the energy of
molecules near their equilibrium geometry. In the molecular mechanics approach (see Box 2.2) the
total energy of a chemical system is approximated by a sum of simple terms involving distances
between atoms, bond angles, and dibedral angles. These terms involve estimated parameters that are
assumed to have the same values as similar parameters obtained by data fitting for simpler molecules.
(Chemists have long known that many structural and energetic features of molecules are nearly
transferable between similar subfragments of molecules.) This representation of the energy has made
possible the modeling of biological systems and rational drug design. It is also at the heart of the
computational engine of many programs that produce three-dimensional computer graphics images of
molecules. Molecular mechanics has become so prevalent that many chemists now equate it with
computational chemistry. This approach has allowed the modeling of molecules with thousands of
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atoms. The practical disadvantage is that only structural types previously encountered in smaller
molecules can be parameterized for larger molecules, so many parameters remain unknown. The
conceptual disadvantage is that this is no longer a first principles theory and the connection to the
Schrodinger equation is unclear. Hence, there can be no rigorous estimate of the potential errors in
this approach and its success relies on chemical intuition for finding suitable molecules from which to
develop the "transferable" parameters.

Another important thread in theoretical chemistry has been the study of many-particle systems such
as liquids, solid materials, and biological macromolecules. The major framework for this study has
been statistical mechanics—a subject with its formal roots in the nineteenth century. In the 1930s, the
study by physical chemists of structure and thermodynamics accelerated with the advent of simple
ideas about intramolecular and intermolecular forces. Equilibrium statistical mechanics has offered
many questions of principle—for example, the question of the nature, and even definition, of phase
transitions. These questions fostered a long-standing cross-fertilization between workers in both the
mathematical and chemical communities (see Box 2.3). Similarly the study of phenomena away from
equilibrium (e.g., the transport phenomena of hydrodynamics and the chemical rates) attracted the
fundamental thinkers in statistical mechanics starting in the 1950s. Recently, corresponding deep
questions of principle about disordered systems such as glasses have attracted workers from both
communities.

Although a large part of statistical mechanics can be studied without computers, machine
calculations for many-body simulation made an early impact in the 1950s and have grown to be the
dominant mode of investigation. Monte Carlo methods, invented at the weapons laboratories by
workers such as Fermi, Ulam, von Neumann, Metropolis, and Teller, were used immediately to
address the many-body problems relevant to the thermodynamics of liquids. Such Monte Carlo
approaches were adapted quickly to the study of polymers as well. The numerical solution of
Newton’s laws for many-particle models, so-called molecular dynamics (see Box 2.3), was also first
carried out by theoretical chemists in the late 1950s and early 1960s. The application of molecular
dynamics and Monte Carlo methods to proteins and other biomolecules in the 1970s has led to their
widespread use throughout the theoretical and experimental chemical communities. Since significant
advances in the efficiency of the algorithms used in molecular dynamics and Monte Carlo simulation
are needed to address the forefront questions such as protein folding, a renewed contact of theoretical
chemists with the numerical mathematics community has recently involved collaborative efforts of
mathematicians, chemists, and physicists.

The advent of molecular quantum mechanics was followed by a very successful theory of chemical
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reaction rates that modeled a reactive event as passage over a reaction barrier on a multidimensional
potential energy surface representing the energy as a function of the internal coordinates of the
reacting system. In its simplest form, the model corresponds to the system moving from reactants to
transition states (the critical configuration), from which the system moves to reaction products. This
conceptually simple model has remained the predominant approach for estimating rates of chemical
reactions. Because of the multidimensionality of the reactive system, however, it is computationally
difficult to implement rigorously. Over the years, efforts have focused on improving methods to
estimate reaction barriers and properties of the reactants, and these have required better solutions of
the electronic and nuclear transition states.

The roots of much of the mathematics now finding application to computational chemistry extend
back at least to the eighteenth or nineteenth century, although, as illustrated in Chapters 3 and 4 of
this report, the most up-to-date developments in the mathematical sciences can also be very natural
tools. Group theory traces its origin to fundamental studies of geometries, but from it has come the
theory of groups of motions, continuous groups, Lie groups, and Lie theory. The need to understand
functions on the sphere and other surfaces led to the representation theory of groups and to various
kinds of function theory. These theories grew up with the creation of quantum mechanics and fed,
and were fed by, quantum mechanics. Much of operator theory and integral equations came from
physics and engineering, as did the general theory of harmonic analysis. Numerical linear algebra
and numerical analysis developed largely as tools for fluid mechanics and military applications, but
their usefulness is vastly more widespread than that.

After World War II the mathematics community entered a period of intense development of its
core, accelerating the growth of fields such as topology, number theory, algebraic geometry, and
graph theory. Advances were largely motivated by questions generated by the internal structure of
mathematics and not by contact with the outside world. In recent years, however, attention has once
again turned outward, and the products of this intense period are now being applied widely in novel
ways. The advent of modern computing capacity has enabled mathematicians to generate
computational algorithms that yield answers—when combined with proper modeling techniques—to
important practical problems. Success has been achieved in signal processing, sound and image
compression, flow problems, and electromagnetic theory. Historically, mathematical scientists have
worked more closely with engineers and physicists than with chemists, but recently many fields of
mathematics such as numerical linear algebra, geometric topology, distance geometry, and symbolic
computation have begun to play roles in chemical studies.

Before proceeding to accounts of past and potential contributions that mathematics can make to
progress in chemistry, it should be emphasized that the challenge of interdisciplinary research is not
one of scientific content alone, but also one of scientific process. Neither the chemist nor the
mathematician is generally the optimal person to construct a mathematical model, as the model by its
very nature lies at the interface between theory and observation. To build the model, an iterative
process of refinement is required, in which mathematical considerations motivate approximations that
need to be checked against reality, and in which key chemical insights necessarily force levels of
mathematical complexity. It is exactly this need for iterative model construction that may motivate
the collaboration of mathematicians and chemists, against the self-referential and conservative
tendencies of each discipline. Focusing on this process of iterative model construction can help
clarify the roles of the collaborators in interdisciplinary research, and by extension illustrate the goals
for their respective disciplines as attempts are made to lower the hurdles to such collaborations. The
model is both the interface between the disciplinary boundaries and the lingua franca between the
cultures.
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3
EXAMPLES OF CONSTRUCTIVE CROSS-FERTILIZATION BETWEEN THE
MATHEMATICAL SCIENCES AND CHEMISTRY

Use of Statistics to Predict the Biological Potency of Molecules Later
Marketed as New Drugs and Agricultural Chemicals

Because the search for new drugs or pesticides typically involves the investigation of thousands of
compounds, many research investigators have sought computer methods that would correctly forecast
the biological properties of compounds before their synthesis. Box 3.1 describes how searches for
new drugs or pesticides are done. There are four well-documented cases of the use of computer
methods, particularly quantitative structure-activity relationship (QSAR) methods, as an integral part
of the design of compounds that are now marketed as drugs or agrochemicals. Not only are these
compounds commercial successes for the companies that developed them, but they benefit mankind by
aiding in the treatment of disease or increasing the food supply. This viewpoint has been so
successful that recently a company, Arris, was founded to incorporate the direct involvement of
mathematicians in the development of proprietary drug design software.

The Hansch-Fujita QSAR method (Hansch and Fujita, 1964) was developed in the early 1960s and
has become widely used by medicinal and agricultural chemists. In this method, one first describes
each molecule in terms of its physical properties and then uses statistical methods to uncover the
relationship between some combination of these physical properties and biological potency.

Usually in QSAR methods the relationships are examined with multiple linear or nonlinear
regression, classical multivariate statistical techniques. However, discriminant analysis, principal
components regression, factor analysis, and neural networks have been applied to these problems as
well. More recently, the partial least squares (PLS) method (Wold et al., 1983) has found wide use
in both QSAR and analytical chemistry. Although PLS was originally developed by a statistician for
use in econometrics, its widespread utility in chemistry has prompted additional statistical research to
improve its speed and its ability to forecast the properties of new compounds, and to provide
mechanisms to include nonlinear relationships in the equations.

Recently, Boyd described four cases in which QSAR and other computer analysis led to a
commercial product (Boyd, 1990). He documented each case carefully by correspondence with the
original inventors. The first is the antibacterial compound norfloxacin marketed for human therapy in
Japan, the United States, and other countries. It is up to 500 times more potent than previously
marketed compounds of this class. Additionally, it is effective against Pseudomonas, a difficult
organism to control. Norfloxacin and its subsequent derivatives achieve a clinical efficacy of
approximately 90%. Norfloxacin was designed at the Kyorin Pharmaceutical Company in Japan from
a traditional QSAR analysis that used regression analysis of about 70 compounds.

The second and third QSAR-designed molecules to reach the market are both herbicides.
Metamitron, discovered by Bayer AG in Germany, was based on a QSAR that involved the multiple
linear regression analysis of 22 compounds. In 1990 it was the best seller in Europe for the
protection of sugar beet crops. The other herbicide, bromobutide, has been marketed in Japan since
1987. It was developed at Sumitomo Chemical Company in Japan based on QSAR analysis of 74
compounds.

The final example concerns the fungicide myclobutanil, which entered the European market in
1986 for the treatment of grape diseases and was introduced to the U.S. market in 1989. It was -
developed by Rohm and Haas in the United States. The design of myclobutanil involved traditional
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QSAR on 67 compounds and three-dimensional molecular modeling to explain the QSAR and to
provide a model of how the compounds bind to their biological target.

Although these successes are real accomplishments, researchers in medicinal and agricultural
chemistry would like to extend the methods to more cases; such extensions create an opportunity for
creative mathematical insights. The thrust of new research in QSAR has been to calculate the
descriptors of the molecules from their three-dimensional arrangements of atoms and electrons in
space (Kubinyi, 1993). The problem is that one of the popular methods, the comparative molecular
field analysis (CoMFA), generates thousands of descriptors for each molecule, whereas the dataset
typically contains biological activity for only 10 to 30 members. While partial least squares can
properly handle such data, it is sensitive to random noise, with the result that the true signal may be
masked by irrelevant predictors. QSAR workers need a new method to analyze matrices with
thousands of correlated predictors, some of which are irrelevant to the end point. This is an
opportunity for a mathematical scientist to contribute an original approach to an important problem.

The new company Arris was founded on the basis of a close collaboration of mathematicians and
theoretical chemists. They have produced QSAR software that examines the three-dimensional
properties of molecules using techniques from artificial intelligence (Jain et al., 1994). The initial
results from this work are promising and suggest that further improvements in three-dimensional
QSAR could result from additional collaborations between mathematicians and theoretical chemists.

References

Boyd, D.B., 1990, Successes of Computer—AssiSted Molecular Design, Reviews in Computational Chemistry,
VCH Publishers, New York, pp. 355-371.

Hansch, C., and T. Fujita, 1964, Rho sigma pi analysis: A method for the correlation of biological activity and
chemical structure, Journal of the American Chemical Society 86:161-162.

Jain, A., K. Koile, and D. Chapman, 1994, Compass: Predicting biological activities from molecular surface
properties; Performance comparisons on a steroid benchmark, Journal of Medicinal Chemistry 34:2315-2327.

Kubinyi, H., ed., 1993, 3D QSAR in Drug Design: Theory, Methods, and Applications, ESCOM, Leiden.

Wold, S., H. Marten, and H. Wold, 1983, The multivariate calibration problem in chemistry solved by the PLS
method, Matrix Pencils (Lecture Notes in Mathematics), Springer-Verlag, Heidelberg, pp. 286-293.

Numerical Analysis

Since much of current computational chemistry is based on numerical computation, it is not
surprising to find successful transfers of information from the numerical analysis community to
computational chemistry. Subroutine packages such as LINPACK, EISPACK, and those in the NAG
and IMSL libraries codify algorithms for solving linear equations and eigenproblems, developed by
the numerical linear algebra community over a period of decades. These software packages provided
reliable and well-documented solutions to common mathematical problems with a fixed and well-
defined user interface. The internal details of these components have been enhanced from time to
time, for example, through the use of the basic linear algebra subroutines (BLAS) that allowed
computer vendors to optimize performance to some extent without requiring significant changes to the
source code of these packages. This allowed them to be used effectively on vector supercomputers
when they were introduced. Many of the EISPACK routines were incorporated into widely used
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quantum chemistry packages such as GAMESS, HONDO, MELD, and COLUMBUS when these
packages were "vectorized."

Recent advances in parallel computing have allowed much larger problems to be addressed cost-
effectively. The LAPACK project funded by the National Science Foundation (NSF) has developed
software for solving linear equations on modern high-performance computers (Demmel et al., 1993).
The Defense Department’s Advanced Research Projects Agency is funding a similar project called
PRISM to develop scalable implementations of an eigensolver based on the invariant subspace
decomposition approach (ISDA), as well as parallel implementations of fundamental linear algebra
operations such as band reduction, tridiagonalization, and matrix multiplication.

A more recent advance in numerical analysis is the method of multipole expansions for computing
long-range forces, such as Coulombic forces, more efficiently through the use of very accurate
simplified approximations (Draghicescu, 1994) in the far field. This has been applied successfully in
molecular dynamics with implementations for both sequential and parallel computers (Ding et al.,
1992a,b).

Many computational chemistry codes have been adapted to work efficiently on parallel computers
by a variety of techniques. Much of this has been achieved by modifying programs and data
structures using techniques from computer science (Plimpton and Hendrickson, 1994). However in
other codes, new parallel algorithms have been developed. For example, grid-based electrostatics
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calculations (Davis et al., 1990) provide one of the most difficult simulations to parallelize with full
efficiency, due to the long-range interactions implicit in such partial differential equations (see Box
3.2). No part of the problem domain can be treated independently of any other, and so there is no
natural parallelism in such problems. Like many algorithms in scientific computation, parallelism
must be created at the expense of communication between processors that would be absent in the
uniprocessor implementation.

Despite the inherent difficulties in parallelizing such problems, novel domain decomposition
methods have provided effective parallel iterative methods (Ilin et al., 1995). These techniques allow
extremely large problems to be solved in a moderate amount of time on massively parallel processors.
They have been incorporated into the computer code UHBD, which has been used effectively to study
biomedically significant enzymes in different ways, providing critical insight into the discovery of
new behavior (Gilson et al., 1994) and even allowing the engineering of new, more effective enzymes
(Getzoff et al., 1992).

References

Davis, M.E., J.D. Luty, B.A. Allision, and J.A. McCammon, 1990, Electrostatics and diffusion of molecules
in solution: Simulations with the University of Houston Brownian Dynamics program, Computer Physics
Communications 62:187-197.

22




Demmel, James W., Michael T. Heath, and Henk A. van der Vorst, 1993, Parallel numerical linear algebra,
Acta Numerica 3:111-197.

Ding, Hong-Qiang, Naoki Karasawa, and William A. Goddard III, 1992a, The reduced cell multipole method
for Coulomb interactions in periodic systems with million-atom unit cells, Chemical Physics Letters 196:6-10.

Ding, Hong-Qiang, Naoki Karasawa, and William A. Goddard III, 1992b, Atomic level simulations on a million

particles: The cell multipole method for Coulomb and London nonbond interactions, J. Chemical Physics
97:4309-4315.

Draghicescu, C.I., 1994, An efficient implementation of particle methods for the incompressible Euler
equations, SIAM J. Numer. Anal. 31:1090-1108.

Getzoff, Elizabeth D., Diane E. Cabelli, Cindy L. Fisher, Hans E. Parge, Maria Silvia Viezzoli, Lucia Banci,
and Robert A. Hallewell, 1992, Faster superoxide dismutase mutants designed by enhancing electrostatic
guidance, Nature 358:347-351.

Gilson, M.K., T.P. Stratsma, J.A. McCammon, D.R. Ripoll, C.H. Faerman, P.H. Axelsen, I. Silman, and
J.L. Sussman, 1994, Open "back door" in a molecular dynamics simulation of acetylcholinesterase, Science
263:1276-1278.

Ilin, A., B. Bagheri, L.R. Scott, J.M. Briggs, and J.A. McCammon, 1995, Parallelization of Poisson-
Boltzmann and Brownian Dynamics calculation, in Parallel Computing in Computational Chemistry, T.G.
Mattson, ed., ACS Books, Washington, D.C.

Plimpton, S., and B. Hendrickson, 1994, A New Parallel Method for Molecular Dynamics Simulation of
Macromolecular Systems, Report 94-1862, Sandia National Laboratories, Albuquerque, N. Mex.

Distance Geometry

The idea of modeling complex molecules by using residue-residue cartesian distances as a guide
for understanding the nature of protein folding and energetics stimulated work in the early 1970s
(Kuntz, 1975; Liljas and Rossman, 1975). It was clear, though, that more mathematical machinery
was needed. The area of distance geometry already existed in the work of Blumenthal (1970), while
closely related mathematics, called multidimensional scaling, was developed by Kruskal and Wish
(1978) and incorporated into advanced statistical packages. In essence, distance geometry is a method
to work in spaces with greater than three dimensions, allowing distance constraints to be satisfied that
could not be satisfied in three dimensions. Distance geometry helps one move from collections of
distances between points to possible coordinates for these points. It also helps one distinguish
important information from the standard restrictions imposed on us by living in three dimensions.

Tools were developed to go from upper and lower bound distances to three-dimensional structures,
a process that required projecting an object from many-dimensional space into three. A seminal paper
explored what distance information was needed to determine a three-dimensional structure to a given
resolution (Havel et al., 1979), and later work concluded that a large amount of imprecise data could
be sufficient to determine a macromolecular structure to a high resolution (Havel et al., 1983). This
was the time when nuclear magnetic resonance (NMR) spectroscopists were beginning to be able to
extract atom-atom distances for matter in solution, which could then be compared with those that
could be found in the crystal by X-ray diffraction (Havel and Wuthrich, 1985). Distance geometry or
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the related approach to refine the molecule in real space (Braun and Go, 1992) turned out to be useful
methods to turn NOE (nuclear Overhauser effect) distances into three-dimensional structures.
Distance geometry has continued to be a key tool in the NMR spectroscopist’s arsenal, providing not
only the structures, but also a quantitation of how accurately they are known.

Distance geometry is an important technique in computational chemistry. The focus of the original
work was to predict protein structure from amino acid sequence (see Box 3.3) and work continues
along these lines using residue-residue potentials (Maiorov and Crippen, 1992). The use of distance
geometry in NMR structure determination is mentioned above. Distance geometry has also been used
as a tool in the development of QSARs in macromolecule-ligand binding (Ghose and Crippen, 1990)
and in a docking procedure to find different orientations that ligands can have when bound to
macromolecules (Kuntz et al., 1982).

An example of this last use of distance geometry is its application to the intermolecular docking of
a small molecule to a protein, similar to what was done to produce the cover illustration. Distance
geometry is applied by setting the distances between interacting atoms to their ideal intermolecular
distance (in contrast to the bond length). The result is a general program for solving conformational
problems involving one or more molecules with implicit interatomic constraints taken from the given
molecular structure and explicit distance constraints added by the user. A program by Blaney et al.
(1990), for example, allows one to solve model building problems on complex molecular systems that
are very difficult or impossible to solve by
conventional methods.

Distance geometry has also been used to
establish which, if any, three-dimensional
conformations of a set of molecules can be
superimposed. One treats the whole ensemble
of molecules simultaneously with inter-
molecular distances set to zero if the atoms are
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to be superimposed or to infinity if they need not be. This has become a useful method for analyzing
three-dimensional structure-activity relationships (Sheridan et al., 1986).

In summary, distance geometry is a general and powerful tool for creating three-dimensional
structures, usually by going into a higher-dimensional space and then projecting into three
dimensions. Its power lies in exploring "conformational” space (the universe of all possible spatial
arrangements of a molecule) and assessing how convincingly the data (often experimental) have
implied the structure. It has been applied in this guise to structures from small organic ring systems
to proteins in the ribosomal machinery. It is clearly an area in which a fundamental technique from
mathematics was brought to bear in important areas of structural chemistry and biochemistry (Crippen
and Havel, 1988).

Given the importance of all areas in which distance geometry has been applied to date (protein
folding, ligand docking, conformational analysis), future development in this area is likely to be
important for computational chemistry (Crippen, 1991). Some of the remaining major mathematical
research challenges in distance geometry applied to chemistry include (1) the need to develop
improved sampling algorithms (e.g., partial metrization); (2) the need for practical algorithms to solve
tetrangle and higher-order inequalities; (3) the need to develop biased sampling approaches that avoid
previously sampled configurations; and (4) energy embedding—given a pairwise potential, how can
one best solve for the global minimum in N—I space and then "squeeze" the system down to 3-space?
A perspective on some of these challenges is given in recent reviews (Crippen, 1991; Blaney and
Dixon, 1994).
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Mathematics and Fullerenes

The structures and properties of the fullerene molecules— "buckyballs" (see Figure 3.1) and related
highly symmetric carbon molecules that are roughly spherical—have been linked with some very
central areas of mathematics." Topology can provide insights into the types of such structures that
can and cannot exist; the symmetries of the molecules, which underlie some of their interesting
properties, are naturally described with group theory; and graph theory can give insight concerning
the vibrational modes of such molecules.

The prototypical buckyball molecule, Cg, is composed of 60 carbon atoms linked into a shape
reminiscent of a soccer ball, mathematically known as a truncated icosahedron. Other fullerenes that
have been observed are composed of more than 60 carbons, except for one member of the family that
contains only 44. The "surfaces" of all members are composed solely of pentagons and hexagons and
share the property that each vertex connects exactly three edges. (This latter property follows from
the chemical bonding of carbon atoms.) Such polyhedral surfaces are subject to a classic topological
relationship derived by Euler:

Y 6-nf, =12,

where the summation is over all faces of the polyhedron and f, is the number of faces with n sides.
This expression leads immediately to a property observed in all the fullerenes observed so far in the
laboratory: since n is found experimentally to take only the values 5 or 6, f; must equal 12. In
addition, the formula puts no restrictions on f;, and indeed a variety of fullerene molecules with a
variety of numbers of hexagonal "faces" have been synthesized.

Group theory provides a methodological way of cataloging the vibrational symmetries of
fullerenes, which can be linked to measurable energy spectra. There are 174 vibrational modes for a
Cg molecule, but only 46 of these are potentially distinguishable. Group theoretic arguments based
on irreducible representations and Schur’s lemma pare this number dramatically, explaining why the
observed infrared spectrum contains just four absorption lines. The same principles applied to the

ISee, e.g., Chung and Sternberg (1993), on which this section is based.
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scattering measured by Raman spectroscopy explain why that
spectrum should have exactly 10 lines.

Graph theory is applied to fullerenes via Hiickel theory,
which forms the basis of an algorithm linking stability
properties to the eigenvalues of a so-called adjacency matrix
(representing, in this case, which pairs of carbons are
bonded). Computation of the eigenvalues would be
straightforward, at least for the smaller fullerenes, but more
understanding comes about through mathematical analysis. FIGURE 3.1 A buckyball.

Again by using Schur’s lemma and other tools of group

theory, the adjacency matrix can be decomposed into much smaller blocks that are amenable to
providing clearer insight. For Cq, this technique has led to closed-form solutions of certain matrices
(Chung et al., 1993), which in turn suggest that Cy, has a stability even greater than that of benzene.
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Quasicrystals

Interatomic and intermolecular forces have traditionally been central concerns in chemistry, not
only because of the useful properties that they produce, but also because the crystallography that
emerges from those forces when matter is solidified has been a dominant tool for structural analysis
(see the section on X-ray crystallography below). Consequently, any striking deviation from
conventional expectation about what interatomic or intermolecular forces can yield as solid-state
ordering automatically concerns chemical researchers. The recently discovered quasi-crystalline state
falls in this category.

That quasicrystals—orientationally ordered solids with local fivefold (or other classically
unorthodox) symmetry but no spatial periodicity—really existed was demonstrated by Cahn et al.
(1988) and Gratias et al. (1988). Their data were obtained from X-ray and neutron diffraction of
Al;Mn, Si; single-phase icosahedral powder and were analyzed by Patterson analysis. Their work
showed that the data were best considered as representing a "cut” of a periodic six-dimensional
Patterson function. This work led to the definition of quasicrystals by the "cut-and-projection”
method.

What is very interesting and perhaps not so well known is that Meyer (1972), 16 years eatlier and
motivated by problems in number theory, had built a mathematical structure that he called a
"pseudolattice," which turns out to be the correct mathematical tool for the study of quasicrystals.
Meyer’s work establishes the basic harmonic analysis for quasicrystals In his book, he studied so-
called Pisot and Salem numbers, which can be defined as follows: A Pisot number 8 is a root of a
polynomial with integer coefficients of degree m such that if 8,, ..., 8,, are the other roots, then A
< 1,i=2, ..., m. A Salem number is defined in the same way, but some of the inequalities are
replaced by equalities.

One of the relations between Pisot or Salem numbers and quasicrystals is the following. Let A €
R”" be a quasicrystal. If @ > 1 and 6A C A, then 6 is either a Pisot or a Salem number. Conversely,
if @ is either a Pisot or a Salem number, then there exists a quasicrystal A, C R such that 6A C A.
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In order to establish that result, Meyer had to establish a theory of harmonic analysis for
quasicrystals.

Recently, Moody and Patera (1993) have used fairly sophisticated Lie group and Lie algebra ideas
to study families of quasicrystals. In their work the mathematics has been used as a means of
unifying various physical models of quasicrystals into one consistent picture.
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Chemical Topology

Topology is a branch of mathematics that studies properties of objects that do not change when the
object is elastically deformed. Topology allows stretching, shrinking, twisting—any sort of elastic
deformation short of breaking and reassembling the object. The basic idea in topology is to relax the
rigid Euclidean notion of congruence and replace it with more flexible notions of equivalence. A
flexible molecule in solution does not maintain a fixed three-dimensional configuration. Such a
molecule can assume a variety of configurations (referred to as "conformation" by chemists), driven
from one to the other by thermal fluctuations, solvent effects, experimental manipulation, and so on.
For small molecules with complicated molecular graphs, topology can aid in the prediction and
detection of various types of spatial isomers (Walba, 1985; Simon, 1986; Walba et al., 1988). Recent
triumphs in the chemical synthesis of molecules with novel topology include the molecular trefoil knot
(Dietrich-Buchecker and Sauvage, 1989) (Figure 3.2) and the five interlocked rings of the
self-assembling compound "olympiadane"” (Amabilino et al., 1994). For larger molecules, given an
initial topological state, one can identify all possible attainable configurations of the molecule and can
detect when an agent (chemical or biological) has intervened to change the topological state
(Wasserman and Cozzarelli, 1986).

Combinatorics, Graph Theory, and Chemical Isomer Enumeration

In the nineteenth century, Arthur Cayley produced a body of work involving the enumeration of
certain types of trees (connected acyclic 1-complexes); some of the enumerated trees corresponded to
the number of certain (combinatorially possible) chemical compounds (Cayley, 1857, 1877). This
correspondence is obtained by abstracting a chemical molecule as a molecular graph; the vertices are
the atoms, and the edges are the covalent bonds, with protons (hydrogen atoms) usually suppressed.
Structural isomers correspond to the (abstract) isomorphism types of these graphs. Enumeration of
isomorphism types uses group theory (permutation groups) to count the intrinsic (internal) symmetries
of these graphs. This work was continued and expanded in the twentieth century by Polya (Polya and
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Read, 1987) and others (Balaban, 1976).

A benefit to chemistry of combinatorial enumeration
is that one can build a (mathematically) complete list of
molecular graphs satisfying certain similarity
(homology) parameters of chemical interest. As
discussed in the section of this chapter beginning on
page 37, the mathematical enumeration of possibilities
is just the first in a series of steps that must be taken in
order to extract chemically useful information (i.e.,
which of the molecular graphs are chemically
realizable). Of those that are realizable, how does one
store representative graphs in a database in a manner in
which chemically relevant queries are feasible? The
abstract (intrinsic) isomorphism type of a molecular
graph carries little information about the three-
dimefls.ional (extrigsic) con'figu'ration, and hence the permission, from Dietrich-Buchecker and
reactivity, of chemical realizations. How does one Sauvage (1989). Copyright 1989 by VCH
derive three-dimensional information from an abstract  pyplishers, Inc.
one-dimensional graph?

FIGURE 3.2 A synthetic trefoil. Reprinted, by

Analysis of Molecular Spectra by Using Cayley Trees

The high-resolution electronic spectra of polyatomic molecules are often very complex, consisting
of many thousands of lines; yet they often contain significant information about molecular
vibration/rotation structure and intramolecular dynamics. Traditionally this information has been
extracted by assigning quantum numbers to lines based on an assumed zeroth-order Hamiltonian.
However there are many molecules for which the choice of zeroth-order Hamiltonian is not clear, or
for which the spectra are so strongly perturbed from a known zeroth-order Hamiltonian that it is not
clear how or if a spectrum can be assigned. Statistical methods have been used to analyze these
spectra, but most spectra contain information beyond the simple statistical limit. Another approach is
to examine coarse-grained spectra (Gomez Llorente et al., 1989), as such spectra sometimes reveal
hidden structure associated with short-time molecular dynamics that can easily be interpreted.

Recently there has been interest in using the methods of graph theory, in particular Cayley trees,
to study complex spectra (Davis, 1993). The basic idea is to use the spectra to construct trees by
coarse-graining the spectra over a hierarchy of time scales. An analysis of the statistical properties of
these trees using methods taken from the cluster analysis literature (Gordon, 1987, Jain and Dubes,
1988) then provides a systematic way of locating hidden structure in the spectra. In addition, when
quantum eigenstates are available for the spectra being studied, it is possible to use the trees to
determine "smoothed" states that represent the underlying vibrational dynamics responsible for the
hidden structure. This also provides a short time picture of the vibrational motions of the highly
excited molecule, and in many cases it is possible to relate this to the underlying classical description
of the vibrational motions, including features such as periodic orbits, bottlenecks to intramolecular
vibrational redistribution, and Fermi resonances.

Group Theory, Topology, Geometry, and Stereochemistry

Stereochemistry studies the spatial configuration of molecules. To enumerate and distinguish
stereoisomers, one must study symmetries of the molecule in 3-space (Cotton, 1971; Fujita, 1991).
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Which of the intrinsic symmetries of the molecular graph are realizable by chemically reasonable
spatial transformations? Of particular interest in this situation is the notion of chirality (see Figure
3.3). A molecule in space is chiral if it is not equivalent to the configuration obtained by a flexible
transformation plus reflection in a plane.

Apart from energy minimization questions, the enumeration of spatial configurations and physical
symmetries and chirality of relatively small molecules requires group theory, geometry, and topology.
For small molecules, group theory is useful in distinguishing stereoisomers obtained by ligand
substitution and in the study of dynamic symmetry of fluxional molecules (Longuet-Higgins, 1963;
Smeyers, 1992). Group theory techniques include representation theory, group characters, and so on.
Group theory has also been applied to quantum chemical problems such as symmetry-adapted
functions for molecular orbital theory, ligand
field theory, and molecular vibrations (Cotton,

1971; National Research Coungcil, in / | §

preparation). By using group theory and
representation theory, symmetry-invariant -
properties of physical interest can be studied T

(Kramer and Cin, 1980). Mulliken (1933), for

example, used ideas from finite point groups

and molecular orbital theory to assign "term

symbols" (i.e., irreducible representation labels) DCQ m
to many excited states of smali, highly

symmetrical molecules.

New techniques for the efficient computation “
of the fast Fourier transform (FFT) for finite /
groups (Gordon, 1987; Diaconis and Rockmore, M
1990) have potential applications in molecular
spectroscopy and in understanding the symmetry Z H
of nonrigid molecules. The unitary group has 4
been used in electronic structure theory to L_D :
develop formulas for matrix elements, FIGURE 3.3 A chiral pair of synthetic Mobius
perturbation expansions, and coupled cluster molecules. Reprinted from Simon (1992) by permission
expansions of the Hamiltonian written in second  of the American Mathematical Society.
quantized form. For larger, more flexible
molecules, the descriptive and computational ability of topology can be used to find topological
barriers to the interconversion of a pair of spatial configurations or to the interconversion of protons
in the molecule. Given the completely flexible equivalences of topology, in which energy, bond
lengths, divalent vertices, and so on are disregarded, if two spatial molecular configurations (or
specific atoms in the configuration) are topologically inequivalent, then they are physically
inequivalent. Knowledge of the topological inequivalence of certain protons is useful in the analysis
of NMR spectra (Walba, 1985; Walba et al., 1988). Topological considerations are sometimes very
effective in detecting chirality of chemical compounds (Walba, 1985; Simon, 1986).

Topology of Polymers

Macromolecules such as synthetic polymers and biopolymers such as DNA, RNA, and proteins are
very flexible and can exhibit high degrees of spatial complexity. Synthetic polymers can be very
large, in some cases having on the order of 10° monomers in a polymer strand (e.g., polystyrene).
Biopolymers (DNA, RNA, proteins) can also be extremely large, having hundreds to thousands of
monomers. For example, in prokaryotes, DNA plasmids are on the order of 10* nucleotides, and

30




bacterial chromosomes are on the order of 10° nucleotides. The effects of microscopic topological
entanglement (knotting and linking) of polymer strands in a polymer melt are believed to be trapped
by quenching (driving off the solvent, or cooling) and (in principle) will be observable in the
macroscopic physical and chemical properties of the quenched polymer network (Edwards, 1968;
Flory, 1976; deGennes, 1984).

Polymers in dilute solution can be modeled by means of self-avoiding walks on a lattice or
piecewise-linear curves in 3-space. The lattice spacing serves to simulate volume exclusion; in the
piecewise-linear case, volume exclusion can be modeled by assigning thickness to the linear segments
of the chain. The degree of entanglement complexity of a polymer with itself (knotting) or with other
polymers (linking) is believed to play a significant role in many physical and chemical processes, such
as crystallization behavior and rheological properties (Edwards, 1968; Flory, 1976; deGennes, 1984).
A linear polymer can be modeled as a self-avoiding walk (SAW) on the simple cubic lattice Z°; a ring
polymer can be modeled as a self-avoiding polygon (SAP) on Z’. One can experimentally generate
randomly embedded ring polymers by performing a cyclization (random closing) reaction on a dilute
family of linear polymers of the same length N (Shaw and Wang, 1993; Rybenkov et al., 1993). A
fundamental mathematical problem is to describe the yield of such a reaction: What is the distribution
of knots and links produced by a random closing reaction, as a function of the length N and the
concentration of linear substrate? A long-standing fundamental conjecture in this area was the Frisch-
Wasserman-Delbruck (FWD) conjecture (Frisch and Wasserman, 1961; Delbruck, 1962): The
probability that a random polygon contains a knot tends to one as the number of edges tends to
infinity.

The FWD conjecture was recently solved with the development of a rigorous proof of the
asymptotic inevitability of knotting (Soteros et al., 1992). The mathematical quantization of
topological entanglement for short chains can be done by Monte Carlo simulation (Klenin et al.,
1988). In Monte Carlo simulations, knotting and linking of random chains are computed in various
models that include volume exclusion and some energetic terms; rigorous results in various models
include the asymptotic inevitability of knotting in random chains and the (at least linear) growth of
certain entanglement parameters with chain length. Monte Carlo simulation can also elucidate
dynamic chemical phenomena such as electrophoresis (Slater and Noolandi, 1986) and adsorption
(Smit and Siepmann, 1994). Recent striking advances in observation techniques such as fluorescence
microscopy for single DNA molecules (Bustamante et al., 1990) make possible the verification and
fine tuning of some of these mathematical theories of molecular conformation and dynamic molecular
properties.

Knots, Links (Catenanes), and DNA

Mathematics and molecular biology continue to benefit from productive interaction, as described in
the upcoming report Calculating the Secrets of Life (National Research Council, in press). One area
of interaction is in the topology and geometry of DNA, because the spatial configuration of
biopolymers is intimately related to function. For example, the DNA of all organisms has a complex
and fascinating topology. Duplex DNA consists of a pair of DNA backbone strands (each strand is
an alternating linear arrangement of sugar and phosphate moieties), and attached to each backbone are
the nucleotides adenine, thymine, cytosine, and guanine. Adenine (A) binds only to thymine (T) by
means of a double hydrogen bond, and cytosine (C) binds only to guanine (G) by means of a triple
hydrogen bond; the bonded pairs A-T and C-G are called base pairs. The hydrogen bonds form the
rungs of a ladder, and this ladder is twisted in space in the form of a right-hand helix (the usual
Crick-Watson model for the primary structure of the double helix). In the double helix, one
backbone strand winds around the other on the average of every 10.5 base pairs. The human genome
is on the order of 3x10° base pairs, which amounts to some 3x10® interwindings. So, human
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chromosomal DNA can be viewed as two very long curves that are intertwined millions of times,
linked to other curves, tied into knots, and subjected to four or five successive orders of coiling to
convert it into a compact form for information storage. For information retrieval and cell viability,
some geometric and topological features must be introduced, and others quickly removed. Some
enzymes maintain the proper geometry and topology by passing one strand of DNA through another
via an enzyme-bridged transient break in the DNA;
these enzymes play crucial roles in cell metabolism,
including segregation of daughter chromosomes at the
termination of replication, and in maintaining proper in
vivo (in the cell) DNA topology. Other enzymes break
the DNA apart and recombine the ends by exchanging
them. These enzymes regulate the expression of
specific genes, mediate viral integration into and
excision from the host genome, mediate transposition
and repair of DNA, and generate antibody and genetic
diversity. These enzymes perform incredible feats of
topology at the molecular level; the description and
quantization of spatial configuration and enzyme action
require the language and computational machinery of
geometry (White, 1992; Wolffe, 1994) and topology
(Sumners, 1992).

In the topological approach to enzymology DRSS IASIOURN S P >
(Wasserman and Cozzarelli, 1986), the topological FIGURE 3.4 A DNA trefoil.
invariance of knotted (see Figure 3.4) and catenated N.R. Cozzarelli and A. Stasiak.

- DNA during experimental work-up and the

computational power of topology are exploited to capture information on enzyme action. For in vitro
(in a test tube) experiments, an enzyme extracted from living cells is reacted with circular DNA
substrate produced by cloning techniques. The enzyme reaction produces a topological signature in
the form of an enzyme-specific family of supercoiled DNA knots and links (catenanes). By observing
changes in DNA geometry (supercoiling, or interwinding of the DNA upon itself) and topology
(knotting and linking) by means of gel electrophoresis and electron microscopy of the reaction
products, the enzyme mechanism can be characterized mathematically (Sumners, 1992). Because of
the enormous variety of knot and catenane structure, fine details of DNA structure and enzyme action
can be selectively assayed.
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Graph Theory

Application of Graph Theory to Organizing Chemical Literature

To organize the chemistry literature for research or patent purposes, it is essential that scientists be
able to search this literature by the chemical features of interest as well as with traditional text
queries. Accordingly, a body of experience has been developed for using computers to recognize
either total chemical structures or parts of them from an input structural diagram and to quickly
identify in databases of millions of compounds those that match the search criteria (Ash et al., 1985).
Currently there are several large comprehensive chemical databases such as those maintained by
Chemical Abstracts (Dittman et al., 1983) and the Beilstein Institute. (The Chemical Abstracts
substance database, for example, contains information on 13 million substances, including molecular
formulas and structure diagrams where available.) Chemical and pharmaceutical companies maintain
such chemical information databases of their own compounds using either commercial (e.g., MDLI,
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DARC, Daylight) or self-written software.

A key element to the success of such chemical information systems was the recognition that a two-
dimensional chemical structure diagram can be treated as a labeled graph (Sussenguth, 1965). Many
algorithms and concepts from graph theory (Harary, 1976) have been applied to chemical
informationproblems, for example, the concepts of graph isomorphism to identify whether a particular
compound is in a database and subgraph isomorphism to identify compounds that contain
substructures of interest, algorithms to detect the smallest set of smallest rings as an aid to unique
atom numbering heuristics, and subgraph ("clique-detection"—see Box 3.4) algorithms to detect the
maximum common substructure in two molecules. These ideas have recently been extended to
provide rapid searches of databases of tens to hundreds of thousands of molecules to find those that
match a three-dimensional query—typically based on distances, angles, and torsions between points in
the stored three-dimensional structure of the molecules (Borman, 1989; Bures et al., 1994).

Generally there are between 4 and 20 distance and angle constraints to be matched in a three-
dimensional query: the number of hits decreases with the number of constraints. Recently,
commercial programs have been updated to include consideration of conformational flexibility.

Graph algorithms are used increasingly to solve similar problems in molecular modeling and
computational chemistry (Martin et al., 1992). For example, to use a molecular mechanics program
to optimize a molecular structure, each atom must be assigned an atom type based on its substructural
environment. Chemical information tools are used to recognize such substructures. Modeled three-
dimensional structures are stored in a chemical information database with the result that it is easy to
find a prebuilt analogue of a new compound one wishes to build. Others have devised programs that
build three-dimensional structures of molecules from their two-dimensional structures by finding the
maximum common overlapping substructures in a database of three-dimensional structures and piecing
these together (Wipke and Hahn, 1988; Leach et al., 1990).

Methods based on graph theory have also been used to find common three-dimensional features
within a set of molecules (Crandell and Smith, 1983; Brint and Willett, 1987; Martin et al., 1993).

In particular, the Bron-Kerbosh clique-detection algorithm has been found to be especially fast (Brint
and Willett, 1987). Such common three-dimensional features might represent a pharmacophore, the
set of three-dimensional features that determines whether or not a molecule will show a particular
biological activity. For example, Figure 3.6 depicts three different molecules that activate the D2
dopamine receptor. The figure shows that although these molecules look different in two dimensions,
in three dimensions they share the arrangement of a hydrogen bond donor, its projection to a receptor
hydrogen bond acceptor, a positively charged nitrogen, and its projection to an anionic site on the
receptor (Martin et al., 1993).

Two-dimensional structures describe the connectedness of the atoms in a molecule. The training
of a chemist involves learning how to translate these two-dimensional pictures into chemical
properties. Thus, an OH means one thing to a chemist, but something different to other folks. Since
molecules are really three-dimensional (with added dimensions of properties), it is important to
translate the two-dimensional structure into three dimensions for computer processing. People have
used the same type of graph-processing algorithms to detect parts of molecules that have certain three-
dimensional properties and to then glue the three-dimensional pieces together much as when using a
Tinkertoy. The methods are expert systems in that they use other knowledge, not first principles.
They operate by using graph-matching ideas.

Clique-detection methods are also used to propose docking orientations of small molecules to
macromolecules (Kuntz et al., 1982; Kuhl et al., 1984; Smellie et al., 1991; Kuntz, 1992). The
computer program DOCK searches databases of tens of thousands of molecules to find those that fit
into a macromolecular binding site of known three-dimensional structure (Kuntz, 1992). A number of
structurally novel enzyme inhibitors have been identified by this means.
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BOX 3.4 Clique Detection

In graph theory terms, a clique is a subgraph in which every node is connected to every other node.
For three-dimensional molecular structures, the nodes of the graph might typically be the atoms of the
structure labeled according to atomic symbol and the edges are the distances between the points. Clique-
detection algorithms find cliques in an input graph that match a clique in a reference graph. That is, they
find corresponding points in the two three-dimensional structures such that corresponding points are of the
same type in the two structures and all corresponding interpoint distances are identical within some
tolerance.

In Figure 3.5, two different cliques in the same molecule are indicated, as is one clique of a second
molecule. As shown, the matching cliques in the two molecules can be superimposed. Notice that the
points do not superimpose exactly since the lengths of the edges need only be identical within some
tolerance.

A molecule with a Another clique in the A second molecule with
clique marked. same molecule. a clique marked.

& &

The two molecules superimposed over their matching cliques. The
corresponding atoms are in shaded ellipsoids.

FIGURE 3.5 The basic operation of clique detection.

In general, these advances have not been the result of active collaborations between graph theorists
and chemical information specialists. Rather, the chemical information specialists have followed the
graph theory literature, and when a particular concept or algorithm seemed the appropriate solution
for some problem, they would attempt to implement it. Sometimes this meant waiting until a
graduate student with the particular skills was available. For example, in the case of the Ullman
subgraph isomorphism algorithm (Ullman, 1976), Peter Willett suspected that it would be an
improvement over the one used in chemical information systems at that time, and several graduate
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2D chemical structures of three molecules that activate the D2 receptor.
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3D overlay of these molecules in the proposed pharmacophore map.
The points for superposition are marked with an arrow.
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FIGURE 3.6 Development of a pharmacophore map. Reprinted (with adaptions) by permission from Martin et
al. (1993). Copyright 1993 by ESCOM Science Publishers B.V.

students tried to implement it. It was not successfully implemented, however, until Andrew Brint,
who was well trained in mathematics, took up the challenge. Since that time, 1986, the Ullman

subgraph isomorphism algorithm has replaced the previous algorithms in all commercial chemical
information systems (Willett, 1987).

Application of Graph Theory to Representation of Chemical Reactions

The synthesis of organic chemicals is an art that takes many years of training and experience to
master. There are two aspects to synthesis: design of the synthetic pathway (what precursors and
general reaction conditions will be used) and laboratory execution of the actual synthesis.
Experienced synthetic chemists design the synthesis of new molecules based on their knowledge of the
hundreds of types of reactions that can be done, their limitations in terms of the other structural
features of the molecules that will survive the reaction conditions, and the usual success of the
reactions in terms of side products and yield.

The complication with using the computer to aid in this process is that synthetic organic chemists
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rely primarily on information contained in two-dimensional chemical structure diagrams. A chemical
reaction is simply a transformation of one diagram into another by combining and transforming
starting materials into products. Hence, the expertise is organized intellectually in pictures, not
numbers. The key insight that these structure diagrams can be described as labeled graphs enabled
the use of the computer to process structure diagrams.

Computer programs for designing the synthesis of compounds also rely heavily on these algorithms
(Wipke et al., 1978; Wipke and Rogers, 1984; Hanessian et al., 1990; Pensak and Corey, 1977,
Johnson et al., 1992; Gasteiger et al., 1992). For example, it is essential to detect the smallest set of
smallest rings since these form the basis of the synthetic strategy. Structure searching is used to
ascertain if a proposed precursor is commercially available. Substructure searching identifies labile
bonds to be broken in a retrosynthetic fashion. Maximal common subgraph algorithms have been
used on the two-dimensional structures of products and reactants to perceive the part of a molecule
unchanged in a chemical reaction (McGregor and Willett, 1980)—what is common between product
and reactant is unchanged.

Two approaches have been used to apply the computer to the design of chemical syntheses. The
first simply catalogues literature chemical reactions, transformations, with the associated starting
materials and product(s), conditions, yield, and literature reference. For this application, the
chemical reaction can be input as normally written and the computer can be used to detect which parts
of the molecule are not changed. By definition, then, the parts of the molecular graph that change
represent the chemical reaction. The unchanged parts represent the chemical context in which the
reaction occurs. In graph theory terms, the unchanged parts are the maximum common subgraph of
the reactants and products. The second type of computer program to aid the planning of synthesis
involves the actual disconnection of the synthetic target into the proposed starting materials. Such
computer programs treat molecules as labeled graphs but use rules encoded by experts to guide the
proposed synthetic route. Because of the large number of rules to be encoded, such retrosynthetic
programs are much less complete and of less general use than the reaction library programs.
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X-Ray Crystallography

An excellent source on the topic of X-ray crystallography is the article by Nobel laureate Herbert
A. Hauptman (1990), from which the following is excerpted with permission of Plenum Publishing
Corporation.

"It was recognized almost from the beginning that the diffraction pattern, the directions
and intensities of the X-rays scattered by a crystal, is uniquely determined by the crystal
structure; which is to say that if one knew the crystal structure—the arrangement of the atoms
in the crystal—then one could calculate the diffraction pattern completely. It turns out that,
conversely, diffraction patterns determine, in general, unique crystal and molecular structures,
although this fact was not known until many years later. In short, the information content of a
typical molecular structure coincides precisely with the information content of its diffraction
pattern. It is a measure of the great advances made by the new science of X-ray
crystallography that, nowadays, one can routinely transform the information content of a
diffraction pattern into a molecular structure, at least for the so-called "small" molecules, that is
those consisting of some 150 or fewer non-hydrogen atoms.

"Since X-rays, like ordinary visible light, are electromagnetic waves, they have a phase as
well as an intensity, just as any other wave disturbance. In order to work backwards, from
diffraction patterns to crystal and molecular structures, it turns out to be necessary to measure
not only the intensities of the X-rays scattered by the crystal but their phases as well.

However, the phases cannot be measured in the ordinary kind of diffraction experiment; they
appear to be irretrievably lost. Only the intensities can be directly measured. This then gives
rise to the central problem of X-ray crystallography, the so-called phase problem, how to
deduce the values of the phases of the X-rays scattered by a crystal when only their intensities
are known . .

"Because the needed phase information was lost in the diffraction experiment, it was
thought that one could use arbitrary values for the phases associated with the measured
intensities of the scattered X-rays. In this way one obtains a myriad of different crystal
structures, all consistent with the known intensities. It therefore came to be generally believed
that a procedure for going directly from the measured intensities to crystal structures could not,
even in principle, be devised. By the same thinking, the problem of deducing the values of the
individual phases from the diffraction intensities, the so-called phase problem, was also thought
to be unsolvable, even in principle. It wasn’t until the early 1950’s, through the exploitation of
special properties of molecular structures and through a simple mathematical argument, that
these erroneous conclusions were finally refuted.

"My work on this problem started in 1948 about a year after I joined the Naval Research
Laboratory in Washington, D.C. and initiated my collaboration with Jerome Karle. . . . The
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first important contribution that Karle and I made was the recognition that it would be
necessary to exploit prior structural knowledge to transform the phase problem from an
unsolvable one to one that was solvable, at least in principle. Our first step in this direction
was to exploit the nonnegativity of the electron density function p(r). Before our analysis was
complete, however, David Harker and John Kasper [1948] published their famous paper . . . in
which they derived inequalities in which the measured intensities restrict the possible values of
the phases. This was a very mysterious paper, because nowhere in it does there appear any
explicit mention of the basis for the inequality relations, and indeed the most important fact is
conspicuous by its absence. It is simply that the electron density function is nonnegative
everywhere. This fact is, however, implicit in Harker and Kasper’s work. In very short order
Karle and I completed our own analysis and derived the complete set of inequality relationships
based on the nonnegativity of the electron density function [Karle and Hauptman, 1950] . . . .
It includes the Harker-Kasper inequalities as a special case, and many others besides. Although
the complete set of inequalities greatly restricts the values of the phases, the relations appear to
be too intractable to be useful in applications, except for the simplest structures, and their
potential has never been fully exploited . . . .

* "Beyond any doubt our most important contribution during the early 1950’s was the
introduction of probabilistic techniques—in particular, use of the joint probability distribution of
several diffraction intensities and the corresponding phases—as the central tool in the solution
of the phase problem [Hauptman and Karle, 1953]. . . . We assumed to begin with that all
positions of the atoms in the unit cell of the crystal were equally likely, or, in the language of
mathematical probability, that the atomic position vectors were random variables, uniformly
and independently distributed. With this assumption the intensities and phases of the scattered
X-rays, as functions of the atomic position vectors, are also random variables, and one can use
the methods of modern mathematical probability theory to calculate the joint probability
distribution of any collection of intensities and phases. A suitably chosen joint probability
distribution leads directly to the conditional probability distribution of a specified structure
invariant, assuming again an appropriately chosen set of diffraction intensities. The conditional
distribution in turn leads to the structure invariant, an estimate of which is given, for example,
by its most probable value. Once one has a sufficiently large number of sufficiently reliable
estimates of structure invariants, one can use standard techniques to calculate the values of the
individual phases, provided that the process incorporates a recipe for specifying the origin.

" Although probabilistic methods played an essential role in the development of the direct
method and provided it with its logical foundation, it must also be pointed out that
nonprobabilistic methods also played an important part . . . . In particular the well known
Sayre equation, a relationship of fundamental importance among measured magnitudes and
unknown phases, continues to be useful to the present day and lies at the heart of some of the
more successful computer programs for solving crystal structures.

"I cannot conclude this brief account of the early history of the direct methods of X-ray
crystallography without also describing the reception this work received at the hands of the
crystallographic community. This was, simply, extreme skepticism, if not outright hostility.

"Today some 100,000 molecular structures are known, most determined by the direct
methods, and about 5,000 new structures are added to the list every year. It is no exaggeration
to say that modern structural chemistry owes its existence to this development . . . .

"Work on the phase problem continues to this day and applications to structures of ever
increasing complexity continue to be made. It still appears that progress is made only in
proportion to our ability to bring more powerful mathematical techniques to bear on this
fascinating problem."
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Remark

The committee can only add its belief that the last quoted sentence from Hauptman’s account has wide
applicability to problems of chemical interest, some of which are described in the next chapter.
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4
MATHEMATICAL RESEARCH OPPORTUNITIES FROM
THEORETICAL/COMPUTATIONAL CHEMISTRY

Introduction

This chapter highlights some of the most prominent research challenges from theoretical/
computational chemistry that appear to be amenable to attack with the help of reasonable advances in
the mathematical sciences. Most of the sections have as their starting point a challenge facing the
chemical sciences, which is described in terms that should be accessible to the nonspecialist. The
remaining sections— "Molecular Dynamics Algorithms,"” "Multivariate Minimization in Computational
Chemistry," and "Fast Algebraic Transformation Methods"—contain discussions of topics from the
mathematical sciences with specific insight into their relevance to theoretical/computational chemistry.
Expositions and references are meant to give the mathematical reader sufficient insight and direction
to be able into subsequently investigate the topic via deeper reading and especially by discussions with
colleagues from the chemical sciences. Note that the topics surveyed in Chapter 3 are also sources of
continuing research opportunity, some of which are identified therein.

As an overview of this chapter and a guide for navigating through it, the matrix in Figure 4.1
displays a subjective assessment of the depth of potential cross-fertilization between major challenges
from theoretical and computational chemistry and relevant topics in the mathematical sciences. This
matrix is based to some extent on intuition because it is an assessment of future research
opportunities, not past results. An "H" in the matrix implies an overlap that appears clearly
promising, while an "M" suggests that some synergy between the areas is likely. The absence of an
H or an M should not be taken to imply that some clever person will not find an application of that
technique to that problem at some point.

Two topics, polymers and protein folding, are consciously underrepresented in this report because
the mathematical research opportunities related to these topics have been surveyed very recently by
other reports from the National Research Council. For a discussion of mathematical opportunities
related to the frontiers of polymer science, see pages 153-168 of Polymer Science and Engineering:
The Shifting Research Frontiers (National Research Council, 1994). A chapter devoted to
mathematical research into protein folding may be found in Calculating the Secrets of Life (National
Research Council, 1995).
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Numerical Methods for Electronic Structure Theory

Most of the recent progress in theoretical chemistry has come from computation of numerical
approximations to the solutions of realistic model problems. This has largely replaced earlier
approaches based on analytic solutions to simplified model problems. Although there are interesting
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intellectual problems involved with analytic properties of the exact solutions, progress to date with
this approach has had little impact on chemistry.

In quantum chemistry, improved numerical approximations made possible by the greatly decreased
cost (in dollars and personnel time) of computing have had an enormous impact. The Journal of the
American Chemical Society, which once reluctantly accepted a limited number of articles reporting
computational results, now has some computational aspect coupled with experimental results in more
than half of the articles published.

The Schrédinger wave equation was introduced earlier, in Box 2.1. The primary method now
used to obtain useful results may be described briefly as follows. The time-independent,
nonrelativistic Schrodinger equation for a system of N electrons in the Coulomb field generated by K
nuclei may be written in the Born-Oppenheimer approximation (using reduced units to eliminate mass
and Planck’s constant) as ‘

HY = Uy, 1)
where
H=T+V @
is the Hamiltonian operator with
N
T=-12Y Vi,
i=1

N K
v-X Yz X X G

-1 A=l j>i

¥

U

‘//k(rprza '”7rN; R17R27 ---’RK) »

U(R,R, ...,RY)

where r; is the position vector for the ith electron and R, is the position vector for the ith nucleus with
charge Z, .

This is a partial differential eigenvalue equation in 3N variables. The equation and its solutions
are parameterized by the nuclear positions and charges. The eigenvalues U,, viewed as functions of
R, yield the potential energy surfaces for the molecule in its ground and excited states after including
the repulsive internuclear interactions. The lowest eigenvalue, in particular, plays a fundamental role
in understanding the chemical properties of a chemical system.

Equation (1) may be solved subject to either bound state or scattering boundary conditions. For a
bound state, the function y should give finite values for the integrals | ¢’0yd*r,d’r, ... for 6 = 1, T,
or V, where the asterisk denotes complex conjugation. For a scattering state, the wavefunction may
have an exp (ik'r) behavior for large |r|. The wavefunction is further subject to conditions of
continuity everywhere and differentiability except at the singularities in V.

The Hamiltonian is symmetric under permutation of the electron coordinates. Consequently, the
eigenfunctions can be chosen to form bases for irreducible representations of the permutation group.
It has been found empirically that only a few irreducible representations actually correspond to
physical reality and the rest are "excluded." This observation is summarized in the Pauli exclusion
principle. In the standard labeling of the irreducible representations of the symmetric group by a
partition of N into the sum of integers, only those partitions containing no integers greater than 2 are
observed.
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In quantum chemistry, this observation is usually implemented by introducing an additional
discrete value, called the spin £;, for each electron. This variable takes only the values +1/2. The
permutation operator is then defined to interchange the spin and position of a pair of electrons in the
extended function (r,£,, r,¢,, . . . ). The Pauli exclusion principle then is simply stated by
observing that the only ¥ that occur in nature change sign under every pairwise permutation of the
electron coordinates.

Equation (1) has no closed-form solutions for nontrivial chemical systems. The most important
problem in electronic structure theory is the rapid construction of useful approximate solutions to this
equation. While chemists have made much progress on this problem, there is always the possibility
that a fresh approach by mathematicians would lead to novel approaches. There is less possibility that
changing the implementation of the methods now in use would lead to great improvement.

The dominant approach for obtaining approximate solutions at present is based on multiple
expansions. First, a basis set is selected in three-dimensional space. Then this is transformed by a
similarity transform to an orthonormal set of
functions called "molecular orbitals." These
orbitals are then used to construct Slater
determinants, which are the simplest functions
in 3N dimensions that obey the Pauli condition
of antisymmetry under permutation of the
positions and spins of the electrons. Finally,
the wavefunction ¢ is expanded as a linear
combination of Slater determinants. Often, the
transformation from basis functions to molecular
orbitals is chosen to optimize an approximation
to the wavefunction from a severely truncated
expansion in Slater determinants. The
coefficients in the Slater determinant expansion and the approximate eigenvalue U may be computed
by the Rayleigh-Ritz variational principle, perturbation theory, cluster expansions, or some
combination of those methods.

All of these methods require formation of matrix elements of the Hamiltonian in the Slater
determinant basis,

H, =Y J & H &, &r, &r,..., )
£...&y
where ® is a Slater determinant and the integration is over 3N dimensions. For a finite basis of
orthonormal molecular orbitals, it is possible to replace this equation by a different one that gives the
same matrix element
H

14

- <&|H]2,> . ®)

This is accomplished by utilizing an operator algebra that facilitates manipulation of Slater
determinants, in which g, is an annihilation operator and a;' is a creation operator. A correspondence
can be established between the function space formed by all possible linear combinations of Slater
determinants and the vector space formed by the creation operators so that

|®,> =ala] ..a!|0> = |i..i> < &. (©)

That is, the Slater determinant, ®,, in which the orbital labels i, . . . iy appear, corresponds to the
abstract element |®,>. The operator H, called the "second quantized Hamiltonian," takes the form
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where, in terms of the orbitals ¢,,
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A major bottleneck in the present approach is the calculation of a large number of six-dimensional
integrals g;,. The choice of basis set is limited to those functions for which these integrals are
readily computed.

The second major bottleneck is the actual calculation of U for this second quantized Hamiltonian.
Although the values of |U| for various chemical systems vary from O to several thousand, the range
of U for interesting variations in the parameters for a given system is typically only 10" to 107
Most programs determine U to a precision of 10, regardless of the absolute magnitude. Because of
the multiple expansions involved, the error in U is often 10" to 10, but the error is often constant
over the interesting range of nuclear position parameters to within +10%.

A major advantage of some of these procedures for obtaining U is that first and second derivatives
with respect to the nuclear coordinate parameters can be obtained analytically. This has greatly
facilitated searching U in this parameter space for minima, saddlepoints, and so on. The major
disadvantage has been the very steep dependence of computer time on the number of electrons.
Evaluating U for one set of parameters typically takes computing time proportional to N, with &
ranging from 3 for the least accurate methods to 7 for the best methods now in common use. Finding
one eigenvalue of H in the full vector space is even more costly, with computer time proportional to
M"** where M is the number of basis functions. Consequently, accurate calculations are limited to
about 40 electrons and an improvement of a factor of 10 in computer speed will not change this very
much.

Although this approach is very productive, it is also limited to small chemical systems. Progress
for somewhat larger systems can be made by use of the Hohenberg-Kohn and Kohn-Sham theorems to
give a useful density functional theory. These assume that it is possible to find an effective one-body
potential ¢ so that, by solving the one-electron Schrodinger equation

(-12V2 + 0)¢, = €9, ,
the eigenfunctions ¢; will yield

oM =Y |o0|*, ®

where p is the exact charge density of the system as defined by Equation (13) below, using the exact
wavefunction defined by Equation (1). As before, o, ¢, and ¢; are parameterized by the nuclear
charges and positions. Here ¢ is a functional of p. From p, the lowest potential energy surface U
can be formed. The difficulty is that there is only an existence proof for o and no systematic
constructive procedure is yet known. Nevertheless, much progress has been made by choosing o
empirically so it will correctly reproduce the properties of simple model systems such as the uniform
electron gas and free atoms. The attraction of this method is that the computational cost grows only
as N°. Effort is being made to improve this even further to obtain methods whose costs grow as N
or N.
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Progress with density functional theory has been rapid in recent years. Direct solution of the
Kohn-Sham equation on a three-dimensional grid now is possible, although basis set expansions are
still more commonly used. The major limitation in this field is still the lack of a scheme for finding
the effective potential that can guarantee the desired accuracy in U for all chemical systems of
interest.

For even larger systems, solution of the Schrodinger equation seems hopeless. In this case, U is
usually directly approximated by taking advantage of empirically observed near-transferability of
parameters between similar chemical systems. This requires some input from the user of these
programs to decide which atoms are bonded. Then, near a local minimum in U, it is possible to
approximate U as a sum,

U = Z AU (for displacements from normal bond lengths and bond angles)
+ E AU (for pairwise nonbonded interactions). (10)

Each pair of nonbonded atoms can be assigned parameters transferred from experimental data to allow
a calculation of a AU(R,;) energy contribution. Similarly, each chemically distinct type of bond can
be assigned an energy for displacement from its usual bond length. Functions constructed in this way
have accuracy approaching the desired 10 level needed for chemical prediction. This approach is
now used for widely different problems, such as rational drug design, structure of liquids, predicting
the shape of moderate-sized organic molecules, and protein folding.

There are many problems in numerical analysis and data handling associated with the present
methods. These include the generation and manipulation of large numbers of six-dimensional
integrals, finding eigenvalues and eigenvectors of large matrices, and searching a complicated
function for global and local minima and saddle points. There are also important questions about the
construction of optimum expansion functions for most rapid convergence. At present, there are no
useful error bounds for the energy or other properties derived from the wavefunction.

The N- and V-Representability Problems

Conventional approaches for computing the solution to the wavefunction have a strong dependence
on the number of electrons. Therefore, searches are constantly under way for methods of comparable
accuracy with a better scaling. In this regard, people have considered methods based on density
matrices, density functionals, Monte Carlo diffusion equations, effective core potentials, and so on.
In particular, because the energy of an atom or molecule is a linear function of the density matrix and
the one- and two-body distribution functions derived from it, density matrix methods raise the hope
that one could dispense with computing the associated 3N-dimensional wavefunction and deal with
simpler three-dimensional density functions. A number of mathematical issues are raised by the
attempt to reformulate computational chemistry in terms of particle distribution functions instead of
wavefunctions.

The N-body distribution function is given simply as the product of the wavefunction and its
complex conjugate,

IV (x|x") = ¥, ¥ ). (11)

Here, x symbolizes the collection of coordinates x,, x,, . . . , Xy, describing the positions r; and spins
&, of all N particles. In the chemical literature, this quantity is usually called the N-body density
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matrix. This may be averaged over an ensemble with an arbitrary set of probabilities (weights) w; to
give the ensemble distribution,

™ =TwI?®, w=0, Iw-=1. (12)

Because of permutational symmetry, all identical particles enter this distribution in an equivalent way.
From the N-body distribution, one- and two-body position distribution functions can be obtained by
integration over the other coordinates:

@ - 3 3. M -
re =y I[ &r,...dry TV, x,x,. x| X,/ %, %, ...X),
{3 IN

P(r,r) = Y TP@x,x,|x.x),
0 (13)
v(ry) = J &r,P(ry + 1.1y,
p(r) = j &r,P(r,,1,).

The distribution function P(x,,x,) is also called the two-body reduced density matrix. Similarly, the
density matrix may first be Fourier transformed and then used to derive the one-body momentum
distribution

(@) = 2m)* Y J I [ &Er,dr,dr, e e T (x,x,| X,/ x,)8, . . (14)
0 .

For most cases of interest, knowledge of the one- and two-body position distribution functions and the

one-body momentum distribution function suffices to determine the energy. For the Hamiltonian H

with given external potential V,(r)) and given two-body interaction potentials g(r,),

H=Y 2oy vm+Y 20, (15)

the energy is given by

E = Nj 5_2 x(p)d’p + Nj V, (o dr
" (16)
. NNV -1
2

There are a number of outstanding mathematical problems associated with these distributions. For
many potentials, the behavior of p(r) is known near the singularities of the potential. Similarly, the
behavior of y(r,) is known for a Coulomb interaction near the singularities, and the form of w(p) is
known for large and small p. The N-representability problem consists of finding the conditions on
this set of three functions such that they could all come from the same N-body density matrix. Many
inequalities are known, but no general solution has been obtained. The V-representability problem
consists of determining the further restriction imposed by considering only those distributions that can
come from a wavefunction that is the eigenfunction of some H for a fixed g.

The two-body reduced density matrix I'® can be integrated to give the one-body reduced density
matrix

D Ig(rlz) y(ry)d&ry,.
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I'dx, | x,) = J dx, TPx x,| x,'x,). a7
Density matrices may be treated as integral kernels and factored in terms of their eigenfunctions

IO, [x,) = T 0, £ () (18)

where

J IO, | x,)f,x)Ex, = nfix). (19)

These functions f; are known as natural orbitals. It is conjectured, but not proved, that they form a
complete set when I' is derived from an exact eigenfunction of H with Coulomb interactions. The
complementary functions

Fix,..x,) = I &Pxy f(xy) V(x,...x,) (20)

are certainly not complete in the 3(N — 1) dimensional space. The extended Koopmans theorem
claims, however, that if ¢ is the exact eigenfunction of H for an N-electron system, then the ground
state wavefunction of the N — 1 electron system may be expanded exactly in the set of F,. Both
"proofs" and "disproofs" of this conjecture exist in the literature (see Morrison, 1993, and Sundholm
and Olsen, 1993, for a recent exchange of opinions and a list of relevant earlier papers).

Because the energy is a linear function of the one- and two-body distribution functions, the
variational minimum will lie on the boundary determined by the N-representability conditions.
Unfortunately, only an incomplete set of necessary conditions are known, but these are already so
complex that further work in this area has been abandoned by chemists.

In density functional theory, only the density o(r) is used. Hohenberg and Kohn showed that the
energy is a functional of this density for a fixed two-body potential g(r;). Density functional theory
has become of practical importance, but progress is hindered by lack of knowledge of the properties
of the functional and lack of a systematic procedure for constructing a convergent sequence of
functionals. Some past work in this field has been summarized in several monographs (Davidson,
1976; Dahl and Avery, 1984; Kryacho and Ludena, 1989; March, 1989; Parr and Yang, 1989; Sham
and Schlinter, 1989; Gadre and Pathah, 1991).
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Melding of Quantum Mechanics with Simpler Models

A daunting challenge for the future is to accurately model chemical reactions in phases and at the
active site of enzymes. An ability to do so would be of great importance in designing new biological
catalysts as well as fully understanding the chemical mechanism of those that already exist. This
would be of significant technological as well as scientific importance. One could imagine that many
new molecules could be made and made much more efficiently by such catalysts.

Methods to do this in an approximate way have been available since 1976 (Warshel and Levitt,
1976) and have involved using the Schrodinger equation (Equation 1 or a variant or empiricized form
of it) for the parts of the system where bonds are being made or broken and thus the electronic
structure is changing, combined with representations such as Equation (10), which assume
transferable electronic structure, for the remaining atoms of the system. Typically, the number of
atoms for which Equation (1) must be solved is much smaller, of the order of 20 to 30, than the
number in the whole system, which for the chemical reactions mentioned is typically more than a
thousand.

In fact, some exciting results for simple reactions involving organic molecules in different solvents
have been achieved (Blake and Jorgensen, 1991). In these cases, one has solved Equation (1) to high
accuracy for a simple reactive pathway in vacuo and then, employing these energies, has used free
energy calculation methods to evaluate the solvation free energy of different structures along the
reactive pathway. This is in some sense a proof of concept for the combined application of Equations
(1) and (10) because impressive agreement with experiment has been achieved in these simple, well-
defined cases.

For more complex cases, such as enzyme reactions, the reaction pathway might involve many
steps, and some of the reacting groups are chemically bonded to the protein, thus requiring some
additional technical challenges in simulating the atoms at the junction between those that are
participating in the chemical reactions and those that are not. In addition, one might have to consider
many conformations of the enzyme and its substrate and accurately represent their relative energy by
using the energy function of Equation (10), all the while considering the electronic energy (Equation
1) and the relative total free energy of the system.

As noted above, progress on this problem has been made when employing much simplified
representations of the electronic structure of the system, which enable the solution of equations such
as Equation (1) for the few "quantum mechanical" atoms as rapidly or more so than the classical
molecular dynamical equations of motion, using Equation (10) as a potential energy (Field et al.,
1990; Warshel, 1991).

These methods use semi-empirical or empirical valence bond approximations to solve Equation (1).
Although these methods are not highly accurate, the use of non-empirical quantum mechanical
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methods for systems of 20 to 30 atoms (the traditional ab initio approach) requires 10* to 10° more
computations than the semi-empirical or empirical approaches and much more time than it takes to
solve the classical equations of motion for the rest of the system (Singh and Kollman, 1986).

To elaborate, calculation of the free energy of a complex chemical system by using classical
molecular dynamics (Kollman, 1993) requires one to calculate the energy of the system and its
gradient with respect to all the 3N coordinates. This can be done for noncovalent processes (those
using only Equation 10) quite efficiently because the energy function in Equation (10) is very simple
and its derivatives are quick and easy to evaluate. When one adds quantum mechanical (bond making
or breaking) effects via Equation (1), in order to make the calculation of the free energy tractable,
one must be able to evaluate the quantum mechanical energy and its gradient for the few quantum
mechanical atoms as rapidly as the classical molecular mechanical energy and gradient for the
thousands of atoms in the remainder of the system. This can be done by using simpler empirical
(Warshel, 1991) and, to a reasonable approximation, semi-empirical (Field et al., 1990) quantum
mechanical methods, but not with the first principle ab initio methods.

Density functional methods (Labanowski and Andzelm, 1991), particularly the divide-and-conquer
strategy (Yang, 1991), show promise in leading to accurate and rapid solutions of Equation (9) for the
electronic structure, but they are still a long way from being fully developed, so one cannot tell how
efficient and useful they will be in this regard.

Thus, accurate simulation of chemical reactions at the active sites of macromolecules will likely
require significant progress in the conformational search problem, even if one considers only the
active site of the enzyme. As should be emphasized, the "conformational search problem" requires
one not only to consider many conformations, but also to rank their relative free energy in solution.
On top of this, one places the problem of accurate and very rapid electronic structure calculations.
The above problems are very challenging conceptually, practically, and computationally.

References

Blake, J.F., and W. Jorgensen, 1991, Solvent effects on a Diels-Alder reaction from computer simulations, J.
Am. Chem. Soc. 113:7430-7432.

Field, M.J., P.A. Bash, and M. Karplus, 1990, A combined quantum mechanical and molecular mechanical
potential for molecular dynamics simulations, J. Comput. Chem. 11:700-733.

Kollman, P., 1993, Free energy Calculations—Applications to chemical and biochemical phenomena, Chem.
Rev. 93:2395-2417.

Labanowski, J., and J.W. Andzelm, eds., 1991, Density Functional Methods in Chemistry, Springer Verlag,
New York.

Singh, U.C., and P.A. Kollman, 1986, A combined ab initio QM/MM method for carrying out simulations on
complex systems: Application to the CH,Cl + C1~ exchange reaction and gas phase protonation of polyethers,
J. Comput. Chem. 7:718-730.

Warshel, A., 1991, Computer Modeling of Chemical Reactions in Enzymes and Solutions, John Wiley, New
York.

Warshel, A., and M. Levitt, 1976, Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric
stabilization of the carbonium ion in the reaction of lysozyme, J. Mol. Biol. 103:227-249.

Yang, W., 1991, Direct calculation of electron density in density-functional theory-implementation for benzene
and a tetrapeptide, Phys. Rev. A. 44:7823-7826.

53




Molecular Dynamics Algorithms

Enhanced Sampling

The multiple minima problem, discussed elsewhere in this report, can be addressed by approaches
other than optimization. Specifically, reasonable sampling strategies can be devised to scan
configuration space in the hope of obtaining information about many local minima, maxima, and
saddlepoints. Moreover, these strategies can incorporate a variety of chemical information, such as
interproton distances from NMR, van der Waals radii (for hard-core exclusion), and
secondary-structure elements. Useful search strategies today involve Monte Carlo, molecular
dynamics (MD), Brownian and Langevin dynamics, calculations of free-energy perturbations,
high-temperature simulations, normal-mode analyses, and various enhanced sampling techniques that
involve hybrids of all of the above. As reflected by those many approaches, the problem of
inadequate sampling of configurational space is receiving increasing attention as a realization emerges
that faster and more powerful computers alone cannot solve this problem in the near future. New
methodologies and a hierarchy of approaches at different levels of resolution—in combination with
experiment—are needed to attack this sampling problem to advance current capabilities of
computational chemistry in connection with biomolecules.

A specific problem involves numerical integration in the context of MD simulations. In this
technique, molecular motion is propagated by numerically integrating the classical equations of motion
governing a molecular system under the influence of a specified force field (McCammon and Harvey,
1987; Allen and Tildesley, 1990). In theory, MD simulations can provide extensive spatial and
temporal information. However, inadequate sampling limits the scope of the results that can be
obtained in practice. Similar issues arise in other chemical applications, such as quantum mechanics,
and the development of improved integration schemes will advance the systems and types of processes
that can be simulated on modern computers.

Numerical Methods for Solving Ordinary Differential Equations

Many problems in chemistry can be reduced to the solution of systems of coupled ordinary
differential equations (ODEs). Examples include classical and Langevin dynamics, rate equations of
kinetic theory, and the time-dependent Schrodinger equation when expanded in a basis set. Thus,
numerical integrators used to solve these equations are fundamental tools in computational/theoretical
chemistry, and any significant improvement in these integrators (e.g., speedup, long-time stability)
results in advances throughout the field.

The technology of numerical integrators for solving ODEs has a long history with significant
interplay among mathematics, physics, and chemistry. Many of the earliest integrators, such as
Runge-Kutta and predictor-corrector integrators, are still in common use, but there have also been
recent advances, driven in part by the need for methods that can treat multiple time scales and have
greater stability for large-scale coupled nonlinear oscillators commonly found in MD of polymers and
biological macromolecules. The long-time stability of integrators for such systems is a challenging
area of mathematical analysis research; perhaps the chemical applications described here will stimulate
important developments.

Symplectic Integrators

Symplectic integrators have recently gained attention in the mathematical community and were
quickly adapted for use in dynamics calculations in chemistry because of their favorable properties.
In applications to Hamiltonian systems, symplectic integrators have the property of building in
Liouville’s theorem, whereby areas in phase space are preserved as the system evolves in time. This
strong conservation property translates into stability over long-time integrations, an important
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property in MD calculations involving millions
and more steps. One consequence of this for
constant-energy MD simulations is that except
for fluctuations, symplectic integrators with
small time steps conserve energy for very long
times, whereas nonsymplectic integrators
typically introduce a systematic drift in the total
energy. Time reversibility is another useful
practical property of symplectic integrators.

Symplecticness may also be used in
determining numerical solutions to the Schrodinger equation. There is an equivalent representation of
quantum mechanics in terms of Hamilton’s equations (Gray and Verosky, 1994) that makes possible
the use of integrators for the quantum dynamics studies that are used for classical dynamics.
Area-preserving mapping are also of interest in their own right in studies of dynamical systems
(Meiss, 1992).

Symplectic integrators may be implicit or explicit. In explicit methods, the solution at the end of
the time step is obtained by performing operations on the variables at the beginning of each time step.
Symbolically, we write y**/ = f{y", At, ...), where f is some nonlinear function, At is the time step,
y" is the approximation to the solution y at time nA¢, and the dots indicate other parameters or
previous solutions (e.g., y*', y*%). With implicit integrators, the final solutions are functions of both
the initial and the final variables (y**' = fiy"*,y", At, ...)), and so coupled nonlinear equations must
generally be solved at each time step to propagate the trajectory. The explicit versions generally
involve simple algorithms that (for propagation only) use modest memory, while implicit methods
involve more complex algorithms but are often more powerful for treating systems with disparate time
scale dynamics, as discussed below.

The development of symplectic integrators has involved significant interplay among
mathematicians, physicists, and chemists. Seminal work on symplectic integrators was done by both
physicists and mathematicians (Ruth, 1983; Feng, 1986; Candy and Rozmus, 1991; McLachlan and
Atela, 1992; Okunbor and Skeel, 1992; Calvo and Sanz-Serna, 1993) based on second- and
third-order explicit approaches and Runge-Kutta methods. Implicit approaches were developed in
parallel (Channell and Scovel, 1990; De Frutos and Sanz-Serna, 1992). Recently, these ideas have
found their way into the chemistry community (Gray et al., 1994) with promising results. The Verlet
integrator (Verlet, 1967), already in common use, was found to be symplectic, thereby explaining the
good associated stability observed in practice. However, symplectic integrators that improve on
previously available methods have also been developed (Gray et al., 1994). Initial applications using
these methods suggest that they may become favored for simulations of polymer dynamics and related
problems with small time steps.

The Time Step Problem in Molecular Dynamics

Although standard explicit schemes, such as the Verlet and related methods, are simple to
formulate and fast to propagate, they impose a severe constraint on the maximum time step possible.
Instability—uncontrollable growth of coordinates and velocities—occurs for step sizes much larger
than 1 femtosecond (10" second). This step size is determined by the period associated with high-
frequency modes present in all macromolecules, and it contrasts with the much longer time scales (up
to 10? seconds) that govern key conformational changes (e.g., folding) in macromolecules. This
disparity in time scales urges the development of methods that increase the time step for biomolecular
simulations. Even if the stability of the numerical formulation can be ensured, an important issue
concerning the reliability of the results arises, since vibrational modes in molecular systems are
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intricately coupled.

Standard techniques of effectively freezing the fast vibrational modes by a constrained formulation
(Ryckaert et al., 1977; van Gunsteren and Berendsen, 1977; van Gunsteren, 1980; Miyamoto and
Kollman, 1992) increase the time step by a small factor such as two, still with added complexity at
each step. The multiple time step approaches for updating the slow and fast forces provide additional
speedup (Streett et al., 1978; Grubmiiller et al., 1991; Tuckerman and Berne, 1992; Watanabe and
Karplus, 1993), although some stability issues are also involved (Biesiadecki and Skeel, 1993).

Implicit Integration Schemes

There are well-known numerical techniques for solving differential equations describing physical
processes with multiple time scales (Gear, 1971; Dahlquist and Bjorck, 1974). Various implicit
formulations are available that balance stability, accuracy, and complexity. However, the standard
implicit techniques used by numerical analysts (Kreiss, 1991) have not been directly applicable to MD
simulations of macromolecules, for the following reasons.

First, such implicit schemes are often designed to suppress the rapidly decaying component of the
motion. This is a valid approach when the contribution of these components becomes negligible for
sufficiently long times, as is the case for the second term in y(t) = exp (—1) + exp (—100¢).
However, this situation does not hold for biomolecular systems because of the intricate vibrational
coupling. It is well recognized that concerted conformational transitions (e.g., in hinge-bending
proteins) require a cooperative mechanism driven by small-scale fluctuations to make possible a
large-scale collective displacement. Thus, although the absence of the positional fluctuations
associated with these high-frequency modes may not by itself be a severe problem, the absence of the
energies associated with these modes may be undesirable for proteins and nucleic acids, since
cooperative motions among the correlated vibrational modes may rely on energy transfer from these
high-frequency modes.

Second, implicit schemes with known high stability (e.g., implicit Euler) can introduce numerical
damping (Zhang and Schlick, 1993). This has prompted the application of such implicit schemes to
the Langevin dynamics formulation, which involves frictional and Gaussian random forces in addition
to the systematic force to mimic molecular collisions and therefore a thermal reservoir. This
stabilizes implicit discretizations and can be used to quench high-frequency vibrational modes (Peskin
and Schlick, 1989; Schlick and Peskin, 1989), but unphysical increased rigidity can result (Zhang and
Schlick, 1993). Therefore, more rigorous approaches are required to resolve the subdynamics
correctly, such as by combining normal-mode techniques with implicit integration (Zhang and
Schlick, 1994); significant linear algebra work in the spectral decomposition is necessary for
feasibility for macromolecular systems. For example, banded structures for the Hessian
approximation (see related discussion in the section on multivariate minimization beginning on page
68) can be exploited in the linearized equations of motion. There has also been some work on
implicit schemes that do not have inherent damping, but preliminary experience suggests that for
nonlinear systems, desirable energy conservation properties can be obtained only up to moderate time
steps (Simo et al., 1992; Zhang and Schlick, 1995). In particular, serious resonance problems have
been noted (Mandziuk and Schlick, 1995).

Third, implicit schemes for multiple time scale problems increase complexity, since they involve
solution of a nonlinear system or minimization of a nonlinear function at each time step. Therefore,
very efficient implementations of these additional computations are necessary, and even then,
computational gain (with respect to standard "brute-force" integrations at small time steps) can be
realized only at very large time steps. '
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Future Prospects

The preceding subsections have described several recent accomplishments in the development of
integration methods in MD simulations and have also outlined several important challenges for the
future. What makes these integration problems particularly challenging is the fact that solutions
demand much more than straightforward application of standard mathematical techniques. At this
point it appears that the optimal algorithms for MD will require a combination of methods and
strategies discussed above, including symplectic and implicit numerical integration schemes that have
minimal intrinsic damping, and correct resolution of the subdynamics of the system by some other
technique (e.g., normal-mode analysis). Undoubtedly, high-performance implementations will make
possible a gain of several orders of magnitude in the simulation times, and there are certainly
additional gains to be achieved by clever programming strategies.
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N- and V-Representability Problems in Classical Statistical Mechanics

Classical equilibrium statistical mechanics presents a class of unsolved N-representability problems
analogous to those in the quantum mechanical regime discussed earlier in this chapter. In this case, N
refers to the number of particles (atoms or molecules) present, rather than the number of electrons.
The most straightforward version of this classical problem concerns a single-species monatomic
system (i.e., spherically symmetric identical particles) and involves the pair correlation function g(r).
This nonnegative function of interparticle distance r is defined by the occurrence probability of
particle pairs at 7, relative to random expectation. Consequently, deviations of g(r) greater than 1
indicate that interparticle interactions have biased the distance distribution to a greater-than-random
expectation, while deviations less than 1 indicate the opposite.

For many cases of interest, the interparticle potential energy function V can be regarded as a sum
of terms arising from each pair of particles present:
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N
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The pair potentials v(r) typically are taken to satisfy the following criteria:
@ v(@)—= +oasr—0;
(b) w(r) is bounded, and is piecewise continuous and differentiable for r > 0;
© |v(n| < CIr* (C > 0,n> 3),forr >R > 0.

Under these circumstances, g(r) plays a special tole in the thermodynamic properties of the N-particle
system (Hansen and McDonald, 1976). This fundamental quantity appears in closed-form expressions
giving the pressure and mean energy at the prevailing temperature and density. Furthermore, it
appears in expressions for the X-ray and neutron diffraction patterns for the substance; consequently,
these diffraction measurements constitute an experimental means for measuring g(r) for real
substances. It should be added that g(r) is also one of the traditional results reported from computer
simulations of N-body systems (Ciccotti et al., 1987).

The experimentally, or computationally, adjustable parameters are temperature; particle number
density; container size, shape, and boundary conditions; and number N of particles. For most cases
of interest, one focuses on the infinite-system limit, where the container size and N diverge, while
temperature, number density, and container shape are held constant. The central problem then
concerns the mapping between the pair of functions w(r) and g(r), where the latter is interpreted as the
infinite-system limit function.

Historically, the fundamental theory of classical systems (particularly in the liquid state)
concentrated heavily on prediction of g(r) for a given w(r), that is, the mapping from v to g. This has
generated several well-known approximate integral equation predictive theories for g(r), including
those conventionally identified in the theoretical chemistry literature by the names Kirkwood (1935),
Bogoliubov-Born-Green-Yvon (Born and Green, 1949), Percus and Yevick (1958), and hypernetted
chain (van Leeuwen et al., 1959) integral equations, each of which has spawned successor
refinements. However, in all cases the respective approximations invoked have, strictly speaking,
been uncontrolled. Consequently, the local structure and thermodynamic property predictions based
on these various integral equations have had only modest success in describing the dense liquid state,
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they have failed to predict the so-called nonclassical singular behavior at the liquid-vapor critical point
(Widom, 1965), and they have been largely useless for the study of freezing and melting transitions.
Perhaps as a result of these shortcomings, the recent trend in classical statistical mechanics has been
to rely heavily on direct computer simulation of condensed-phase phenomena. Because these
simulations often require massive computational resources, a case can be made that revival of analytic
predictive theory for g(r) would be favorable from the point of view of the "productivity issue" in
theoretical and computational chemistry.

In some respects, the inverse mapping of g to v is even more subtle, intriguing, and
mathematically challenging. At the outset, one encounters the obvious matter of defining the space of
functions g(r) that in fact can be generated by a pairwise additive potential energy function V. A few
necessary conditions are straightforward; as already remarked, g(r) cannot be negative. It is generally
accepted (but not rigorously demonstrated) that g must approach unity as r diverges if the temperature
is positive, even though the system itself may be in a spatially periodic crystalline state. In addition,
the Fourier transform of g(r) — 1,

Gk) = f exp (ik'r) [g()-1] dr,

is also subject to necessary conditions stemming from the nature of the linear equilibrium response of
the system to weak external perturbations: for all k¥ > 0 one must have (Percus, 1964)

1 +pGk) 20 (p = number density).

These generic conditions can be supplemented by others that are necessary if v(r) has an infinitely
repelling hard core, that is,

wWr) = +oforQ0 <r<a,
v(r) = bounded for a < r.

This hard-core property prevents neighbors from clustering too densely around any given particle, and
from the geometry of hard-sphere close packings it is possible to bound the integral of rg(r) over
finite intervals of r.

A primary challenge concerns formulation of sufficient conditions on g(r), given that V possesses
the pairwise-additive form displayed above. At present we have no rational criterion for deciding
whether a given g(r), however "reasonable” it may appear to be by conventional physical standards,
corresponds to the thermal-equilibrium short-range order for any pairwise additive V. It is not even
clear at present how to construct a counterexample, namely, a g(r) meeting the necessary conditions
above that cannot map to a v(r) of the class described. In any case, formulation of sufficient
conditions would likely improve prospects for more satisfactory integral equation (or other analytical)
predictive techniques for g(r).

Several directions of generalization exist for this classical V-representability problem; these include
the following matters:

1. Properties of triplet and higher-order correlation functions g" for occurrence probabilities of
particle n-tuples;

2. Properties of correlation functions for particles (molecules) with internal degrees of freedom
(rotation, vibration, conformational flexibility);

3. Effects of specific nonadditive potentials, which would be the case when including
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three-particle contributions in V; and,
4. Multicomponent (several species, or mixture) systems, in particular the important case of
electrostatically charged particles (ions) with their long-ranged Coulombic interactions.
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Implications of Topological Phases

The Born-Oppenheimer approximation dates from the 1920s, and the entire notion of molecular
structure can be based upon it. It is thus a surprise that significant qualitative physics has been
ignored by most chemical physicists in applying the Born-Oppenheimer approximation to systems with
degenerate electronic states. The basic idea behind the Born-Oppenheimer approximation is that
nuclei move much more slowly than electrons. Thus, the Schrodinger equation for electrons can be
solved at fixed nuclear configuration and the resulting energy can be used as a potential for studying
the motions of the nuclei themselves.

Generally, when nuclear motion itself is quantized, one assumes the usual Schrodinger equation
with a classical scalar potential for the nuclear motions. This has proved valid for systems that do not
have significant electronic degeneracy. A serious mathematical problem is the uniqueness of the wave
function for the nuclei. The Born-Oppenheimer approximation really assumes a single path for the
slowly moving nuclei. If there is an electronic degeneracy, topologically distinct paths may connect
two different positions on the same electronic surface. Thus, in addition to the phases that one
develops for the quantum dynamics through the simple scalar potential dynamics, there is an
additional topological phase. The existence of this topological phase, which depends on the path
between two points, has been known since at least the 1950s, when Longuet-Higgins studied it in the
context of Jahn-Teller distortions. Only in recent years has its significance been truly appreciated,
however. One of the leaders in bringing out the significance of topology in quantum molecular
dynamics was M. Berry. However, it was appreciated somewhat earlier by Truhlar and Mead that
this topological phase plays a role in chemical reactions. Indeed it is important even in the most
fundamental of chemical reaction problems, the H + H, reaction. Very recently, the discrepancy
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between experimental results for H + H, and large-scale computations of the scattering cross sections
was shown to arise from neglect of this topological phase.

For problems with small amounts of degeneracy, the topological phase is easy to handle with little
mathematical sophistication. Either a trajectory encircles a conical intersection (of Born-Oppenheimer
energy surfaces) or it does not, leading to two values of the phase. This encircling of singularities
can be described by using the idea of a gauge potential. With higher degeneracies, however, very’
difficult topological problems may be encountered since many surfaces can make avoided crossings in
many locations. The paradigm of such complicated topology problems may well be metal clusters.
For metals in the thermodynamic limit, there are numerous energy levels corresponding to the
excitation of electrons just below the Fermi sea to just above it. Since the electronic levels are highly
delocalized, these energy changes are quite small and the energy surfaces are close together. The
actual dynamics of the nuclei must involve the coupling of several surfaces. There are many possible
interchanges of the metallic ionic cores, and complicated topologies can result.

Another place in which topology enters is when an underlying approximate wave function is built
up out of many degenerate electronic wave functions and the dynamics of electronic excitations is
studied. The paradigm for this is the recent interest in resonating valence bond descriptions of
metallic and superconducting materials. Here, reorganization of the different valence bond structures
as an excited electron or hole moves around gives rise to topological phases and gauge fields. It has
been argued that these effects are at the heart of the new high-temperature superconductors and
represent a real breakdown of the traditional band structure picture of metals. Most models studied
by physicists, however, have been very simple, and it will be necessary to understand how the
topological phases arise in completely realistic electronic structure calculations if one is to make
predictions of new high-temperature superconductors on the basis of these ideas.

Theoretical and Computational Chemistry in Spaces of Noninteger Dimension

A major mathematical landmark in the eighteenth century was Euler’s introduction and exploitation
of the famous gamma function. One of its basic and striking properties is that it provides a natural
"smooth" extension of the factorials n! that are defined nominally just for the positive integers to all
positive numbers, and indeed even into the complex plane. The pervasive appearance of the Euler
gamma function throughout classical mathematical analysis constitutes a powerful paradigm suggesting
that analogous extensions from the discrete positive integers to the complex plane in other contexts
might generate analogous intellectual benefits.

During roughly the last two decades, simultaneous developments in several distinct areas of
physical science appear to point to the necessity (or at least the desirability) of just such an extension.
Specifically, this involves generalizing the familiar notion of Euclidean D-dimensional spaces from
positive integer D at least to the positive reals, if not to the complex D-plane. This is not an empty
pedantic exercise; at least one serious proposal has been published (Zeilinger and Svozil, 1985)
claiming that accurate spectroscopic measurements of the electron "g-factor” indicate that the space
dimension of our world is less than 3 by approximately 5 X 107. Furthermore, in various theoretical
applications that have so far been suggested for the continuous-D concept, D itself or its inverse
appears to be a natural expansion parameter for various fundamental quantities of interest. However,
most of the work along these lines thus far has been ad hoc, lacking rigorous mathematical
underpinning. Naturally this calls into question the validity of claimed results.

Three physical science research areas deserve mention in this context. The first is quantum field
theory; dimension D has been treated as a continuously variable "regularizing parameter” whose
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manipulation avoids embarrassing divergences in perturbation expansions (Bollini and Giambiagi,
1972; t'Hooft and Veltman, 1972; Ashmore, 1973). The second is the statistical mechanics of phase
transitions (specifically involving critical point phenomena); because of rigorously known results for
D=2adD =4,5,6, ..., series expansions in the quantity 4—D have been developed for
various quantities of interest to access the physical case D = 3 (Wilson and Fisher, 1972; Gorishny et
al., 1984). The third area holds perhaps the greatest promise for chemical progress, namely, the
development of atomic and molecular quantum mechanics (with useful computational algorithms) in
spaces of arbitrary D (Goodson et al., 1992; Herschbach et al., 1992).

As in the other applications, the notion of atomic and molecular quantum mechanics is
unambiguously defined for D a positive integer; in other words, the Schrédinger wave equation and

its boundary conditions have an immediate and clear meaning. The desire to embed these problems
in the arbitrary-D context arises primarily from the observation that solutions to the Schrodinger
equation adopt a simple limiting form as D approaches infinity, namely, those for simple harmonic
oscillators localized in multidimensional space (Goodson et al., 1992; Herschbach et al., 1992).
Eigenfunction and eigenvalue expansions in 1/D have then been formally generated, with the hope
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that series summation techniques (e.g., Padé approximants) would permit extension to the case of
ultimate interest D = 3. This strategic approach to real chemistry in the real world is emboldened by
the facts that (a) D = 1 is often an exactly solvable case (or at least amenable to very accurate
numerical study), and (b) exact interdimensional identities for D and D + 2 are known (Herrick,
1975). These latter afford convenient fixed points for refining the series summation attempts.

The presumption that spaces with noninteger dimension were available as analytic tools for atomic
and molecular quantum mechanics rests largely on simple observations such as the fact that the D-
dimensional (hyper)spherical volume element,

dv(D)/dr = K(D)r®®D

K(D) = 2nP?/1(D]2),

is an obvious analytic function of the variable D. The implicit assumption in the various applications
to date, quantum mechanical and otherwise, seems to have been that the same expression can be
invested with mathematical legitimacy for noninteger D, in the sense that it is an attribute of a family
of precisely defined spaces. This is by no means an obvious proposition, since any quantity such as
K(D) above could be augmented by any function of D that vanishes at the positive integers, such as
sin (27D), without affecting the situation for conventional Euclidean geometry.

The published literature reveals some attempts to axiomatize spaces of noninteger dimension
(Wilson, 1973; Stillinger, 1977), but it is clear that the subject requires deeper mathematical insight
than it has thus far experienced. In particular, it is desirable to determine the extent to which
arbitrary-D spaces are uniquely definable as uniform and isotropic metric spaces and what their
relation to conventional vector spaces might be. It has been suggested (Wilson, 1973) that
noninteger-D spaces can be viewed as embedded in an infinite-dimensional vector space, but whether
this is uniquely possible or even necessary to perform calculations remains open.

It is important to stress the distinction between the general-D spaces that may be obtained by
interpolation between the familiar Euclidian spaces for integer D on the one hand and the so-called
fractal sets to which a generally noninteger Hausdorff-Besicovitch dimension can be assigned
(Mandelbrot, 1983). The latter are normally viewed as point sets contained in a Euclidean host
space; furthermore, they fail to display translational and rotational invariance, and are therefore not
uniform and isotropic.
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Multivariate Minimization in Computational Chemistry

Introduction

Mathematical optimization is a branch of mathematics that seeks to answer the question "What is
best?" for problems in which the quality of the answer can be expressed as a numerical value (see,
e.g., Gill et al., 1983b; Fletcher, 1987; Ciarlet, 1989). This question might refer to the "best”
approximation in some local sense (i.e., a local solution) or to the global solution over the entire
feasible space (i.e., the global minimum) (see, e.g., Nemhauser et al., 1989; Floudas and Pardalos,
1991). A common problem arises when a complex physical system is described by a collection of
particles, or combinations of states, in a multidimensional phase space. An energy or cost function is
associated with each different configuration, and the challenge is to find sets of points that minimize
(or maximize)' the objective function. Such applications arise frequently in molecular modeling,
rational drug design, quantum mechanical calculations, mathematical biology models, neural
networks, combinatorial problems, financial investment planning, engineering, electronics,
meteorology, and computational geometry. In applications that arise in computational chemistry
(Scheraga, 1992; Schlick, 1992), the feasible space is often very high in dimensionality and
complexity, so both local and global minima are of interest.

There are many optimization techniques available for the computational scientist. Nonetheless,
implementation of the more sophisticated techniques requires considerable computing experience,
algorithm familiarity, and intuition. While software vendors offer a variety of "black-box" codes,
serious practitioners frequently discover that a good deal of understanding and modification is
required for successful applications. Such modifications involve tailoring the algorithm to features of
the problem at hand—such as function separability—or exploiting available experimental information
that might guide the optimization path—such as nuclear magnetic resonance (NMR) distance restraints
in molecular mechanics. Moreover, successful new optimization schemes may be not be known or
available to nonspecialist mathematicians, let alone to scientists in allied fields.

Thus, the transfer of knowledge, its application to real problems, and its further developments will
greatly benefit from increased interdisciplinary interactions. In particular, it may be useful to

!These are equivalent problems. The minimum of a function f is the maximum of the function —f.
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stimulate algorithmic developments in optimization toward important scientific problems, such as arise
in chemistry, that would involve synergistic efforts on both parts: the application-oriented scientist
and the algorithm developer. Such collaborations are likely to be fruitful to both parties, since testing
of new methods will be possible on real-life problems and might generate an evolving body of
solutions that take into account the available physical data. There is recent evidence (e.g., in special
sessions of meetings of the Society for Industrial and Applied Mathematics) that mathematicians have
discovered the challenges in "mathematical chemistry problems" and protein folding, but many
frontiers lie ahead.

Problem Classification

The available optimization algorithms are classified according to the features of the target problem.
The objective function to be minimized (or maximized) may be formulated in terms of integer
variables (discrete optimization), integers in permutations (combinatorial optimization), continuous
real numbers (continuous optimization), or both continuous real numbers and integers (mixed integer
optimization). Examples from these four classes involve, respectively, order planning for
organizations (the integers may denote, for example, the number of units of each item to be purchased
monthly for a restaurant); the traveling salesman problem (the ordered list of N integers represents a
cyclical itinerary for visiting N cities); molecular structure prediction (the real numbers may denote
nuclear or electronic positions of the particles, or a set of internal variables describing the molecular
system); and airline crew scheduling (the integers may identify particular flight routes and the real
numbers may refer to the hours of shift for the flight crew). For computational chemistry, continuous
optimization is the most important type of problem.

In addition to the nature of the control (or independent) variables, the objective function may be
linear, quadratic, or nonlinear (the latter in varying extent). The problem may be formulated as
unconstrained or constrained, with constraints involving equality or inequality conditions, which may
be linear, quadratic, or nonlinear. Thus, for the above examples, constrained formulations may
introduce upper and lower bounds for the Cartesian positions or specified values for certain internal
variables that should remain fixed; the airline crew scheduling problem will incorporate into the
optimization formulation the total number of scheduled flights, lower and upper bounds for the
lengths of shifts, enforced limits on gaps between transatlantic flights, and so on. In addition to
functional form and constraints, other important considerations involve the cost of evaluating the
objective function and the availability (or lack) and associated cost of derivatives. In some cases, the
derivatives may be discontinuous, and special techniques may be required. Derivative information
can often be exploited significantly for the optimization algorithm, but the benefits must be balanced
with the additional costs involved.

The Complexity of Computational Chemistry Problems

Optimization problems frequently arise in molecular and quantum mechanical calculations in
chemistry. These problems are typical of optimization applications seeking favorable configurational
states of a physical system. The large-scale nature of these problems together with the lack of
convexity rules out exhaustive sampling in the feasible space except for very small systems.
Therefore, clever optimization methods are a necessity, and their improvement translates into the
ability to model larger physical systems and generate important structural predictions.

The expense of calculating the function and the associated derivatives also introduces difficulties
that limit the type of algorithm that may be utilized. In many molecular mechanics applications, it
may be tedious but possible to calculate the derivatives; often, the additional computational cost
involved in computing the gradient is only a small factor more (e.g., 4 to 5) than computing the
function (and guaranteed by automatic differentiation, which also saves coding efforts; see Box 4.5).
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Computational intensity often stems from the long-range interactions among the N particles in the
system (e.g., Coulombic forces). In molecular mechanics, the direct evaluation requires on the order
of N’ operations, and even if a cutoff radius is introduced, computation of the nonbonded terms
dominates computation time. Implementation of fast particle methods (Greengard, 1994) in molecular
mechanics and dynamics calculations (Grubmiiller et al., 1991; Board et al., 1992) is clearly
important for reducing the severity of this problem and allowing more accurate representation of the
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long-range interactions; the advantage of such an approach has already been demonstrated in other
scientific applications (Greengard, 1994), for example in the context of integral equations in
engineering problems (Nabors et al., 1994).

The multiple-minimum problem is a severe hurdle in many large-scale optimization applications.
The state of the art today is such that only for small and reasonable problems do suitable algorithms
exist for finding all local minima for linear and nonlinear functions. For larger problems, however,
many trials are generally required to find local
minima, and finding the global minimum cannot be
ensured. These features have prompted research in
conformational-search techniques independent of, or
in combination with, minimization (Leach, 1991).
To illustrate, consider a simple model for an alkane

chain of m units (residues). From combinations or L
id-body

rough partitions in favorable structures of the el ﬂll_g

individual building blocks, the number of possible
starting points produces 3" starting configurations.
For polypeptides and polynucleotides, the flexibility
of the monomer (building block) configurations
increases, producing a rough range of 10™ to 25™
reasonable starting points by coarse subdomain
partition (e.g., combinations of typical side chain,
main chain, backbone, or sugar dihedral angles).
Exhaustive searches are clearly not feasible.

The buildup technique is a related
configurational search strategy, used in studies of
proteins (Pincus et al., 1982) and nucleic acids
(Hingerty et al., 1989). Reasonable starting points
are constructed by combining minima of
conformational building blocks. This rational
strategy has performed rather well in practice, but there is no guarantee that all biologically important
local minima, much less the global minimum, are revealed. One of the problems is the nonlocal
nature of the interactions in the folded macromolecule. That is, segments far apart in the linear
sequence will make close contact upon folding; thus, the collective minimum may not correspond to
any minima of the constituent building blocks. Furthermore, the number of starting points is still
exponential in the number of building blocks. This buildup technique might be an interesting
mathematical area to explore further, perhaps through techniques of interval analysis (see below under
global optimization methods).

Molecular dynamics, discussed on pages 54-58, can also be viewed as a technique for obtaining
structural information (e.g., mean atomic fluctuations, dynamical pathways, isomerization rates) that
is complementary to potential energy minimization. While in theory information on all thermally
| accessible states should be observable, the restriction of the integration time step to a very small value
‘ with respect to time scales of collective biomolecular motions limits the scope of molecular dynamics
in practice.

Local Optimization Methods

Local methods are defined by an iterative procedure that generates iterates {X,, X;, ..., Xy,...}
intended to converge to a local minimum x" from a given x,. Their performance is clearly sensitive
to the choice of starting point in addition to search direction and algorithmic details. In the
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line-search subclass, a search vector p, is computed at each step by a given strategy, and the objective
function f is minimized approximately along that direction so that "sufficient decrease" is obtained
(see, e.g., Dennis and Schnabel, 1983; Luenberger, 1984). In trust-region approaches, a local
quadratic model of the function is minimized at every step using current Hessian information, and an
optimal step is chosen to lie within the "trust region" of the quadratic model (Dennis and Schnabel,
1983).

Local deterministic optimization methods have experienced extensive development in the last
decade (e.g., Nocedal, 1991; Wright, 1991). Studies have produced a range of robust and reliable
techniques tailored to problem size, smoothness, complexity, and memory considerations. Many
variants of Newton’s method have been produced that extend applicability far beyond small or sparse
problems. Nonderivative methods are generally not competitive, but significant developments have
been made in nonlinear conjugate gradient (CG) methods (generally recommended for very large
problems whose function is very expensive to evaluate) and Newton methods.

The classes and extensions of Newton’s method, the prototype of second-derivative algorithms,
include discrete Newton, quasi-Newton (QN) (also termed variable metric), and truncated Newton
(TN) (e.g., Dennis and Schnabel, 1983; Gill et al., 1983b). Historically, because of the O(r?)
memory requirements, where z is the number of variables in the objective function, and the O(r°)
computation associated with solving a linear system directly, Newton methods have been most widely
used (1) for small problems, (2) for problems with special sparsity patterns, or (3) when near a
solution, after a gradient method has been applied. Fortunately, advances in computing technology
and algorithmic developments have made the Newton approach feasible for a wide range of problems.
Indeed, effective strategies have been tailored to available storage and computation, exhibiting good
performance in theory and practice, and this trend will undoubtedly intensify.

Two specific classes are emerging as the most powerful techniques for large-scale applications:
limited-memory quasi-Newton (LMQN) and truncated Newton methods. LMQN methods attempt to
retain the modest storage and computational requirements of CG methods while approaching the
superlinear convergence properties of standard (i.e., full memory) QN methods (Gilbert and
Lemaréchal, 1989; Liu and Nocedal, 1989; Nash and Nocedal, 1991; Zou et al., 1993). Similarly,
TN algorithms attempt to retain the rapid quadratic convergence rate of classic Newton methods while
making computational requirements feasible for large-scale functions (Dembo and Steihaug, 1983;
Nash, 1985; Schlick and Overton, 1987). With advances in automatic differentiation (see Box 4.5),
the appeal of these methods will undoubtedly increase even further (Dixon, 1991).

Both limited-memory QN and TN methods are promising for computational chemistry problems.
Moreover, they can be adapted to both constrained and unconstrained formulations and can exploit the
special composition (distinct components) of the potential energy function to accelerate convergence
(Derreumaux et al., 1994). This issue involves a natural separation of the objective function into
components of differing complexity (e.g., local and nonlocal interactions). This special composition
can be exploited to construct banded or other sparse preconditioners in the context of CG and TN.
Such problem tailoring requires some familiarity with the algorithmic modules and also demands
knowledge of the theoretical and practical strengths and weaknesses of the different minimization
methods. With rapidly growing improvements in high-performance vector and massively parallel
machines, application-tailored software may be even more important in combination with parallel
architectures whose design is motivated by specific applications.

Global Optimization Methods

In their attempt to find a global rather than local minimum, global optimization methods tend to
explore larger regions of function space (see, e.g., Dixon and Szegd, 1975; Floudas and Pardalos,
1991). The global minimum of a function can be sought through two classes of approaches:

72




deterministic and stochastic. Deterministic methods usually require the objective function to satisfy
certain smoothness properties; they construct a sequence of points converging to lower and lower
local minima. Ideally, they attempt to "tunnel” through local barriers. Local minimization methods
are often required repeatedly in the framework; hence, developments in local methods are likely to
have an important impact on global techniques as well. Computational effort tends to be very large,
and a guarantee of success can be obtained only under specific assumptions.

Stochastic global methods, on the other hand, involve systematic manipulation of randomly
selected points (Nemhauser et al., 1989; Rinnooy Kan and Timmer, 1989; Schnabel, 1989; Térn and
Zilinskas, 1989; Byrd et al., 1990). Success can be guaranteed only in an asymptotic, stochastic
sense, although in practice many applications are very promising.

In the early days of global optimization (mid-1970s), most efforts focused on stochastic or
heuristic approaches (Dixon and Szegd, 1975). In chemical applications, simulated annealing
(Metropolis et al., 1953; Kirkpatrick et al., 1983; Dekkers and Aarts, 1991) is an appealing method
of this class and is effective for small to medium molecular systems. It is also very easy to
implement and generally requires no derivative computations. Indeed, there has been a wide
application of this method to chemical systems.

More recent efforts have focused also on deterministic global optimization methods. Interesting
examples include the tunneling method (Levy and Gomez, 1985; Levy and Montalvo, 1985) and
several innovative deterministic approaches in chemical applications (Purisima and Scheraga, 1986;
Piela et al., 1989; Scheraga, 1992; Shalloway, 1992). In particular, in the mathematical community,
two recent powerful methods have been identified that might be useful to chemical applications. One
exploits convex properties and is based on differences of convex functions (Pardalos and Rosen,
1987; Horst and Tuy, 1993); the other is based on interval analysis (Hansen, 1980, 1992; Neumaier,
1990; Schnepper and Stadtherr, 1993). The convexity approach has been successful for global
quadratic problems of up to approximately 300 variables and 50 constraints (Pardalos and Rosen,

" 1987; Horst and Tuy, 1993). Interval analysis, a field little known even to mathematicians, was
pioneered by Hansen, among others. It involves computation of strict bounds to bracket the global
minimum of a function. The algorithms involve various branch and bound techniques that recursively
split the configuration space, aiming at bracketing the minimum as tightly as possible. Other
information, such as bounds on derivatives, may also be generated. This class of methods can be
applied to the solution of nonlinear systems, as well as global constrained and unconstrained
optimization. However, these methods require second-derivative information (Hessians for
optimization problems) and, moreover, the inverse of a preconditioning matrix to produce realistic
bounds. For these reasons, interval analysis has been applied only to relatively small problems thus
far. However, future research may be promising with preconditioning techniques that are now well
developed for local optimization.

Perspective

In sum, the optimization applications that arise in computational chemistry offer challenging and
rewarding problems to mathematicians. There is a need for the development of both local and global
methods (the latter stochastic as well as deterministic) and for transferring the technology rapidly
from one discipline to another. In particular, optimization schemes will be more effective when all
available chemical information (e.g., function separability, availability of derivatives, additional
experimental data) is taken into account in design of the algorithm, as is possible by preconditioning
in both limited-memory quasi-Newton and truncated-Newton algorithms. Multigrid approaches
(Kuruvila et al., 1994) and functional transformations (e.g., Piela et al., 1989; Wu, 1994) appear
promising to global optimization problems in computational chemistry, and further developments
might be fruitful.
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Areas of mathematics that may have an important impact on the field are interval analysis and
automatic differentiation. While the field of deterministic global optimization is still in its infancy in
terms of general large-scale applicability, it is anticipated that the exploitation of vector and massively
parallel computing environments for algorithm design will lead to significant progress in the coming
years. Technological advances will clearly improve the range of global optimization strategies that
can be considered, but greater efforts in parallel programming skills will be essential so that these
high-performance platforms will have a true impact on these important scientific problems.
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Locating Saddlepoints

The potential energy hypersurface of an individual molecule describes its minimum energy (i.e.,
stable) states as well as the transition structures linking these states. In other words, the local minima
on the potential energy surface correspond to the minimum energy conformations of a molecule, and
first-order saddlepoints on the surface correspond to transition states. These concepts can be extended
to interacting molecular assemblies as well (e.g., clusters, biomolecular systems with solvent).

With the advent of modern computational techniques, it has become possible to exhaustively search
the potential energy surface of individual molecules containing fewer than about 12 rotatable bonds
(i.e., degrees of freedom for the dihedral angles that define molecular geometry, along with bond
lengths and bond angles, in internal coordinate space) when classical (molecular mechanics-based)
potential energy functions are employed. The previous section has broadly described the issues and
various algorithmic techniques for finding local and global minima on such complex multidimensional
energy surfaces. This section focuses on another aspect of conformational searches: the identification
of saddlepoints and their connection to chemical reactions.

In addition to a description of the conformational properties of individual molecules, the potential
energy surface can be employed to describe the energetics of chemical reactions. Therefore, searches
on the potential energy hypersurface of a molecule can extend to molecular reactions as well
(Eksterowicz and Houk, 1993). Reactants and products correspond to energy minima, whereas
transition states linking products to reactants usually correspond to first-order saddlepoints on the
energy surface (although unusual symmetries can produce higher-order transition states, including
those of the "monkey-saddle" type). Thus, the location of stationary points (particularly minima and
saddlepoints) on potential energy surfaces represents an important and challenging problem in
computational chemistry.

In chemical applications, special conformational-space search methods have been dev1sed for
locating minima on molecular mechanics-based potential energy surfaces. These methods include
stochastic (Saunders, 1987; Chang et al., 1989; Ferguson and Raber, 1989) and deterministic, grid-
based (Motoc et al., 1986; Lipton and Still, 1988; Dammkoehler et al., 1989) approaches. Yet, with
rare exception (Kolossvary and Guida, 1993), conformational searches have not been performed in
such a way that saddlepoints are located. Nonetheless, the utility and indeed necessity of determining
the conformational transition states that link these minima have recently been emphasized (Anet,
1990). Whereas in the past, conformational searches have been synonymous with location of energy
minima, it is clear that in order to adequately study the conformational properties of molecules it is
essential to locate first-order saddlepoints as well.

Significant effort has addressed the problem of locating transition states on potential energy
surfaces derived from quantum mechanics calculations. A number of algorithms have been developed
such as those that rely on eigenvector-following techniques (Cerjan and Miller, 1981; Simons et al.,
1983, 1984; Bell and Crighton, 1984; Simons, 1985; Baker, 1986). In these methods one begins a
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saddlepoint search at or near a local minimum that is found by standard minimization techniques. A
spectral decomposition is performed to find all the normal modes of the system (mass scaled
eigenvalues and associated eigenvectors of the Hessian matrix (i.e., second-derivative matrix of the
potential energy); then one of the normal modes is selected and followed in an "uphill" direction (i.e.,
a direction that leads to an increase of potential energy) until a saddlepoint is located. Evaluation of
the energy gradient and Hessian matrix at each step of the search is performed until a point on the
surface is located at which the gradient is zero and the Hessian possesses only one negative
eigenvalue. In another approach, the linear synchronous transit method (Halgren and Lipscomb,
1977) has been employed to aid in the location of saddlepoints. It locates a maximum along a path
connecting two structures and thus can be used to provide an initial guess for the transition state
structure that connects them. Methods that find the location of saddlepoints by beginning the search
at points on the potential energy surface that are of higher energy than the saddlepoint one wishes to
locate have also been described (Berry et al., 1988). Recent developments (Jorgensen et al., 1988;
Culot et al., 1992) have led to improved efficiency in locating transition states in calculations based
on quantum mechanics-derived potential energy surfaces. Nonetheless, the aforementioned
saddlepoint searches sometimes fail to converge, or they converge to critical points that are minima.
Clearly, more robust algorithms are still needed, and this is an area that mathematical optimizers may
find very interesting.

It is conceivable that algorithms for locating transition states on potential energy surfaces derived
from calculations based on quantum mechanics could be employed for the location of conformational i
transition states on molecular mechanics-derived potential energy surfaces once the minima have been i
located. However, these algorithms have generally been used to study mechanisms of chemical ‘
reactions and have not been adequately tested for locating such conformational transition structures.

In a typical conformational search procedure, the potential energy surface is scanned randomly or
systematically and a large number of trial structures are generated for energy optimization. These
structures can be severely "distorted” geometrically in the sense that bond lengths and angles lie out
of the ranges observed experimentally, and van der Waals radii of atoms may overlap. These
structures must then be optimized by the standard, "greedy" descent methods of local minimization
toward a local minimum or toward a saddlepoint. However, for the quantum chemical calculation of
a reaction mechanism, the reactant and product are usually known, and uphill movement toward the
interconnecting saddlepoint is sought.

Conformational search procedures that locate first-order saddlepoints and minima with equal
efficiency would be of enormous utility. Even though advances in this area have been slow, some
progress has been achieved. For example, the so-called self-penalty walk method (Czerminski and
Elber, 1990) provides an example of an algorithm for the calculation of reaction paths in complex
molecular systems when molecular mechanics-derived potential energy functions are employed.

However, it is likely that additional work will be required to develop methods for the efficient
conformational searching of saddlepoints. New algorithms for conformational searches in which first-
order saddlepoints are efficiently located are clearly urgently needed.
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Sampling of Minima and Saddlepoints

Many problems in computational chemistry require a concise description of the large-scale
geometry and topology of a high-dimensional potential surface. Usually, such a compact description
will be statistical, and many questions arise as to the appropriate ways of characterizing such a
surface. Often such concise descriptions are not what is sought; rather, one seeks a way of fairly
sampling the surface and uncovering a few representative examples of situations on the surface that
are relevant to the appropriate chemistry. Some specific examples include finding snapshots of
crucial or typical configurations or movies of kinetic pathways. This allows what one might call an
artistic description of the chemical situation. Such a description is often looked down upon by
quantitative scientists as being "anecdotal,” but it is important not to cut ourselves off from any route
to understanding. To make this point one might compare the kinds of understanding of ancient
cultures that are obtained from the numerous scholarly statistical studies of bookkeeping accounts and
what we learn from the great paintings of the same periods, which give us different perspectives on
social life. The main danger of such artistic representations is that one must have some guarantee that
they do not simply represent a kind of beautiful propaganda for an incorrect qualitative viewpoint.
Clearly, statistics must be used to validate such individual samples of a system’s behavior.

Several chemical problems truly demand the solution of these mathematical problems connected
with the geometry of the potential surface. Such a global understanding is needed to be able to
picture long time scale complex events in chemical systems. One area in which this is clearly
essential is the understanding of conformational transitions of biological molecules. The regulation of
biological molecules is quite precise and relies on sometimes rather complicated motions of a
biological molecule. The most well studied of these is the so-called allosteric transition in
hemoglobin, but indeed, the regulation of most genes also relies on these phenomena. These
regulation events involve rather long time scales from the molecular viewpoint. Their understanding
requires navigating through the complete configuration space. Another such long time scale process
that involves complex organization in the configuration space is biomolecular folding itself. By what
process is the structure of a biological molecule determined? In order to function, enzymes require a
fairly precise three-dimensional positioning of different chemical groups in the protein molecule. To
achieve this precise positioning of only a few groups, the collective interactions of the rest of the
molecule must conspire to form such a fairly rigid construction. Although the three-dimensional
structures of protein molecules exhibit some symmetries, they are exquisitely complex, and in
addition, the architectures of folded protein are formed from molecules that have no simple pattern in
their one-dimensional sequence.

Understanding how the Brownian motion on an energy surface can funnel such a molecule to a
very precise structure is a major puzzle requiring a global analysis of the many-dimensional energy
surface. The global geometry of the potential energy surface also enters into the study of
nonbiological chemical problems such as those involving the structure and mechanical properties of
amorphous materials. While crystalline solids can be studied through the analysis of the ground state
and the first few excited states, glasses and other amorphous materials have a huge number of local
structural configurations. Unlike a typical liquid, however, these individual configurations last for
incredibly long periods of time, and one must understand the statistics of the different minimal energy
structures and the nature of the transitions between them in order to quantify the slow relaxations of
such systems. The aging of amorphous materials in glasses shows that they do not obey the simple
equilibrium statistical mechanical laws so often used to characterize simple materials. At the same
time, these aging phenomena have great practical significance to the macroscopic properties (e.g.,
long time stability) of materials important to such applications as fiber optics. The local minima are
the mathematically simplest objects to characterize statistically the potential energy surface. The
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crucial questions here are first, what do the minima look like and, second, how many of the different
kinds of minima exist on the surface? Sampling many minima of a potential energy surface can be
carried out with gradient descent techniques, and a great deal has been learned about the qualitative
structural characteristics of these minima for both biomolecules and glasses. The counting of minima
seems to be of crucial importance as well, since
at the phenomenological level, the kinetics of
amorphous materials are highly correlated with
their configurational entropy. At this point, no
very good algorithm yet exists for doing this
sort of counting in an objective and reliable
way, even on a computer.

The very deepest minima of systems canbe
characterized by using techniques superficially Clerk Maxwell and JOSlah Wlllard Gibbs.
similar to those of thermodynamics and ‘ L
equilibrium statistical mechanics.
Generalization of mean field theory for random
Hamiltonians is used. The low-lying states of heteropolymeric biological macromolecules have been
studied in this way. There is a very clear analogy to the phenomenon of broken ergodicity studied in
spin glasses by the quasi-equilibrium statistical mechanical methods. The problem of broken
ergodicity is one that is central to understanding the global topology of potential energy surfaces for
such "random" systems. This problem plays a role both in the issues discussed here of biological
macromolecules and amorphous materials, and in other optimization problems as well. There are
deep connections with the theory of NP-completeness, a fundamental question in theoretical computer
science. The formal questions of broken ergodicity in spin glasses (i.e., the topology of low-energy
states) have not been answered entirely unambiguously by experiment, and the question of the nature
of the low-lying states is one that is still hotly debated. An important route to understanding this sort
of broken ergodicity has been by the methods of rigorous statistical mechanics pioneered by
mathematicians. It has been shown rigorously in
some higher-dimensional problems that the broken
ergodicity imagined in simple phenomenological
theories of protein folding can, in fact, occur. It is
still an open question, however, how ergodicity is
broken for three-dimensional systems, spin glass
systems, or for the random heteropolymers
themselves.

One of the most interesting results of the theory of broken ergodicity based on quasi-equilibrium
statistical mechanics is that the low-energy states of a typical Hamiltonian are related to each other in
a fashion that is characterized by an ultrametric distance. This ultrametricity concept arose earlier in
the study in pure mathematics. The ultrametric organization may well play a role in the dynamics on
such surfaces, and ultrametric hopping models have been widely discussed.

While the use of statistical energy surface topography is now coming to be accepted in the context
of biomolecules, there is a still deeper mathematical question in its application to glasses. This
question is, How does a Hamiltonian that is perfectly regular, having no explicit randomness, possess
solutions that appear to be totally irregular and aperiodic? A long-standing issue for the purist has
been whether even hard spheres have, as their most dense state, the simple regular packing
characteristic of face-centered cubic (FCC) crystals. Recently a proof of this was announced, but it
has apparently been retracted. In fact, for the three-dimensional situation there is little doubt from the
experimental input that the dense state is in fact periodic. The question of the closest packings in
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high-dimensional systems has many contacts with group theory and the theory of optimal coding.

The existence of quasicrystals has made the problem an even richer one since even the existence of
such quasi-periodic structures was ruled out by "folk theorems" of physicists. It is likely that truly
aperiodic crystals can, in principle, exist in three dimensions. An important argument for this is
based on tiling theory. It has been shown that certain tiling problems are NP-complete. This implies
that it is certainly very difficult to figure out whether a periodic packing of such a tiling is possible.
Thus, it seems that the problem of totally aperiodic crystal phases for regular structures may be itself
tied to the NP-completeness question.

The problem of transitions between minima on such a high-dimensional surface is in a still more
primitive state than the characterization of minima. The search for minima is itself a relatively stable
computational problem. The search for saddlepoints that connect individual minima is
computationally much more difficult. This is certainly a consequence of the unstable mode at such
saddlepoints. Despite numerous efforts, there are no entirely reliable methods for carrying out such a
search. For many simple problems, finding a reasonably good transition state is possible, but these
techniques become still more complicated and less reliable as system size increases. On the purely
theoretical side, very simple models that relate the heights of barriers to the statistics of minima have
been developed, but almost no truly rigorous work has been done. Simply characterizing the minima
and the saddlepoints connecting a few of them does not give an entire description of significant
processes on a complex energy landscape. It is clear that one must understand something more about
the basin of attraction of any given minimum. If the nearby minima are not entirely uncorrelated,
this basin of attraction will depend on their structure as well. A characterization of the size of such
funnels in biomolecular problems is essential to understanding protein folding.

Similarly, in many such complex problems it has been imagined that specific kinetic pathways are
important. Again some work has already been done on the question of how specific pathways can
emerge on a statistical energy landscape. These ideas are, however, based on the quasi-equilibrium
statistical mechanics of such systems, and there are many questions about the rigor of this approach.
Similarly, a good deal of work has been carried out to characterize computationally pathways on
complicated realistic potential energy surfaces.

Techniques based on path integrals have been used to good effect by Elber in studying the
recombination of ligands in biomolecules and in the folding events involved in the formation of a
small helix from a coiled polypeptide. These techniques tend to focus on individual optimal
pathways, but it is also clear that sets of pathways are very important in such problems. How these
pathways are related to each other and how to discover them and count them is still an open
computational challenge.
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Efficient Generation of Points That Satisfy Physical Constraints
in a Many-Particle System

Prototypical Problem

Consider N particles in a cube in three-dimensional space, each with x, y, and z coordinates in the
range [0, L]. The state of the system is then given by specifying the positions r; of all N points.

In the statistical mechanics modeling of condensed phases, one typically is interested in restricted

sets of particle configurations. For instance, one’s interest is often restricted to only those states for
which

Ir,-r| > 1 forall 1<i<j<N.

Imagine that the points represent the locations of the centers of hard spheres of diameter unity. The
conditions state that the hard spheres do not overlap one another; that is, the spheres repel each other
strongly when they are close together, so that each center-center distance must be greater than unity.

For the present problem, we are interested in the regime where N is large, of the order of 10% to
10°. The volume is large enough so that N/L? is in the range (0,2%). In the actual problem of
common interest for computer simulation of materials, the system will satisfy periodic boundary
conditions. In effect, this means that the restriction above is more precisely stated as

|"i"'j_nL‘ >1 forall1<i<j<N

and all vectors n with integer components .

The problem is to generate efficiently states of the system that satisfy these constraints. The states
will more than likely be generated by a stochastic process of some sort. A more ambitious goal is to
generate states such that all states that satisfy the constraints are equally likely to be generated. (More
precisely, if the set of positions {r;, . . ., ry} is regarded as a set of random variables, the joint
distribution function for these variables, which is zero when one or more of the constraints is
violated, should be a constant for values that satisfy the constraint.)

This is an example of a problem for which each constraint is relatively easy to state and express in
terms of a small number of the variables in the problem, and the number (or measure) of states that
are consistent with the constraints is very small compared with the total number of states, in fact
vanishing exponentially as N increases. This problem is related to that of generating possible states
for an atomic fluid whose interatomic potential precludes two atoms from getting close to one
another. The rigid-sphere interpretation relates to the challenging mathematical problem of existence
and characterization of random sphere packings.

Variations on the Prototypical Problem

First Variation. Consider a random walk in a three-dimensional space that consists of N steps of unit
length and random direction. Let s; for i = 1 be the ith step. The position

J=1

is the location of the random walker after the ith step, with 7, being equal to the origin. The only
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states of interest are those for which these positions never come close to one another. More
precisely,

Ir,-r,| =1 forall 0<i<j<N.

This problem is related to specifying the possible structures of a polymeric molecule. The goal is to
generate random walks that satisfy these conditions. As in the previous problem, the method of
generation is likely to be probabilistic. A stronger goal would be to generate states with a process
such that all states that satisfy the constraint are equally likely to be generated. (More precisely, if
each step s; of the random walk is specified by a location on the surface of a unit sphere, the joint
distribution function of the N steps should be zero for sets of steps that violate the constraints and a
constant for sets that satisfy the constraints.)

Second Variation. In problems of interest, there may also be some additional constraints on the
locations; for example, for some pairs of locations, there might be restrictions of the form

a; < |ri—rj| sbij.

When the number of these restrictions is large enough to imply that only a small range of structures
can satisfy all the constraints, the problem becomes a special case of the problems that are solved by
using the methods of distance geometry, which is discussed in more detail in Chapter 3.

Third Variation. The various steps in the random walk of the previous problem might be correlated
in the sense that the probability distribution for s, might depend on the value of s, or perhaps both s,
and s,,. .

In these problems, there are some constraints that are "easy" to satisfy (e.g., in the first problem
each particle must be inside the cubic box; in the second problem, each step must have unit length).
Then there are others that are "harder” to deal with. Whether a constraint is hard or easy to deal
with is related, in general, to whether it is concerned with just one of the basic vectors of the problem
or with more than one.

Simplest Strategy

The simplest strategy for generating states that satisfy all the constraints is obviously to generate
states that satisfy the easy constraints and then delete those states that violate the hard constraints.
This solution is practical, if at all, only for relatively uninteresting situations. It works for the first
problem, for example, only when the density N/L® is much lower than the maximum density allowed.
The problem is that almost all of the states generated will subsequently be deleted by this process.

More precisely, in the first problem one might imagine generating sets of N points, each of which
is randomly distributed in the cube, and then discarding sets that violate the conditions specified. The
sets not discarded then should be uniformly and randomly distributed among the states that do satisfy
the conditions. The difficulty with this approach is that the probability that a set of randomly
generated points satisfies the condition is of order exp(-aN) for large N, where a is a constant that
depends on the density N/L*. For large N, therefore, much of the computational effort is wasted.

An obviously more efficient procedure is to generate the set of positions one at a time and test
each one to ensure that it is far enough from the previous positions before generating the next
position. If one violation of the conditions is found this way, no effort need be expended to generate
the remaining positions in the set or to test them. Even this is not efficient enough. A significant

86




amount of effort will be expended in generating partial sets of positions, only to find that the set must
be discarded because of the value of some position generated late in the sequence. This difficulty is
sometimes referred to as the problem of "exponential attrition" because of the exponentially small
fraction of sets of positions that are generated successfully.

Metropolis Monte Carlo Method

In this strategy one first generates one state that satisfies all the constraints; then this is used as the
beginning of a Markov process whose transition probabilities are such that transitions are allowed
only to other states that satisfy the constraints. In practice, this means that each transition typically
involves a change of, at most, one of the coordinates by a very small amount. The two difficulties
with this method are the following:

1. The set of states that satisfy the constraints may not be connected, so that with a particular
initial state it will be impossible to generate a very large fraction of the states.

2. Even if the set of states that satisfy the constraints is connected, typical Markov processes
explore the range of accessible states relatively slowly.

Therefore, some entirely new ideas for dealing with this class of problems would be worthwhile.

Relationship of These Problems to More General Optimization Problems

Some special cases of these problems, especially the first and second variations described above,
are closely related to optimization problems that arise in chemical calculations. Chemical
optimization problems typically involve minimization of an energy or free energy that depends on the
positions of atoms or groups of atoms. (See pages 68-77 for a discussion of optimization problems
and methods.) In more general problems, the object is not to minimize the energy or free energy but
to calculate the typical properties of all the states of low enough energy that they might be populated
at the temperature of interest. Such functions typically are very large and positive for certain
configurations in which atoms or molecules are very close. It is typically true that a configuration in
which any one pair of atoms is too close to one another has a high enough energy to make the total
energy of the configuration so high that it cannot possibly be a solution of the optimization problem
(or so high that it is not thermally populated). Thus, identification of states that are consistent with
constraints of the type mentioned can be a useful first step toward solving optimization problems in
chemistry.

Molecular Diversity and Combinatorial Chemistry in Drug Discovery

Overview of the Drug Discovery Process

The discovery of new drugs is a time-consuming, risky, and expensive process. These things are
true even though in the past 15 years there has been a dramatic increase in the number of three-
dimensional structures of proteins that can be used as scaffolds for the conceptual and computational
aspects of drug design. The discovery traditionally moves through several stages once the biological
target has been chosen (see Science, 1994).

First, a moderately active compound, a "lead," is identified from clues provided by the literature,
through "random" screening of many compounds or through targeted screening of compounds
identified by three-dimensional searching or docking. If the three-dimensional structure of the
biological target macromolecule is known, then one may use three-dimensional searching to identify
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existing compounds that are complementary to the binding site in the target (Kuntz, 1992; Martin,
1992). Alternatively, if a number of structurally unique compounds bind to the target, one may
propose a three-dimensional pharmacophore and search databases for matches to it (Martin, 1992).

Once a lead has been identified, hundreds to thousands of additional compounds are designed and
synthesized to optimize the biological profile. The cost and environmental impact of synthesis and
patentability are also important issues. If the three-dimensional structure of the biological target is
known, then molecular modeling might be used in the design (Erickson and Fesik, 1992). As testing
data are accumulated, statistical three-dimensional quantitative structure-activity relationships (three-
dimensional QSAR) may help set priorities for
synthesis. Any attractive compounds found are - — —
tested in more detail through advanced protocols 'harmacophore isa chemical 1dent1ty and geo-
that more reliably forecast therapeutic and : &
toxicity potential.

Lastly, the surviving compounds are
prioritized, and the best compound known at
that time is prepared for clinical trial.

New mathematical techniques could have an impact on the rate of new compound discovery if the
potency of compounds could be forecast more quickly and accurately before their synthesis. Many of
the improvements in computational chemistry discussed elsewhere in this report would also impact the
ability to forecast affinity based on the structure of the ligand and the macromolecular target.
However, additional opportunities exist for cases in which the structure of the macromolecular target
is not known, cases for which the forecast is based on three-dimensional QSAR investigations
(Kubinyi, 1993). The most explored method is comparative molecular field analysis (COMFA;
Cramer et al., 1988). With CoMFA, molecules are aligned with each other; then for each molecule,
the interaction energies with various probes are calculated at intersections of a three-dimensional
lattice that encloses all the molecules. The relationships between these thousands of energy values
and the potencies of the 10 to 100 molecules are established by the statistical method of partial least
squares (PLS) with leave-one-out cross-validation (see Frank and Friedman, 1993, for background on
PLS and comparisons of the method to other statistical procedures). When a CoMFA model is found,
it generally has quite robust forecasting ability: the average error in forecasting the potency of 85
compounds in eight datasets is 0.55 logs or 0.8 kilocalories per mole (Martin et al., in press).

However, there are indications that one - may fail to find a model, even though one exists, because
of the coarseness of the lattice spacing (2 A) and the sensitivity of PLS to noise. PLS can find only
linear relationships between properties and biological potency; a method that could detect nonlinear
relationships would be an improvement and might model more sets of data. Limited experiences with
neural nets have shown no improvement over PLS. There might be an optimization method that could
select the relevant variables from a pool of thousands. It would have to be roughly as fast as PLS (a
minute or so to do leave-one-out cross-validation on 25 compounds) since one of the elements of the
analysis is to compare results with different properties calculated at the lattice points, adding whole
molecule properties, comparing alignment rules, investigating outliers, and combining and separating
subseries of molecules.

cologlcal effects

Sources of Molecular Diversity

The weak point in the whole scenario of new drug discovery has been identification of the "lead."
There may not be a "good" lead in a company’s collection. The wrong choice can doom a project to
never finding compounds that merit advanced testing. Using only literature data to derive the lead
may mean that the company abandons the project because it cannot patent the compounds found.
These concerns have led the industry to focus on the importance of molecular diversity as a key
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ingredient in the search for a lead. Compared to just 10 years ago, orders of magnitude more
compounds can be designed, synthesized, and tested with newly developed strategies. These changes
present an opportunity for the imaginative application of mathematics.

Automated testing methods employing simplified assays, mixing strategies, robotics, bar-coding,
etc., have led many pharmaceutical and biotechnology companies to test every available compound,
perhaps 10° to 10° of them, in biological assays of interest (Gallop et al., 1994; Gordon et al., 1994).
Testing a collection generally takes approximately six months. This operation presents several
challenges: (1) Is it really necessary to test all of the compounds in order to identify the series of
compounds that will show the activity? (2) Should a pilot set of compounds be tested first to adjust
the assay conditions and forecast how many active compounds will be found? If so, how would this
set be selected? (3) What compounds, available from outside vendors, should be selected for purchase
to complement the set of in-house compounds? Is there a way to quantify their worth other than the
cost to synthesize in-house?

Concurrently, synthetic chemists developed new strategies that provide large numbers of
compounds for biological testing typically as mixtures. Such libraries, synthesized in a few months,
can contain 10* to 107 different chemical structures (Baum, 1994). Although this number of
compounds seems high, note that it has been estimated that there are 10?® stable chemical compounds
of molecular weight less than 750 that contain only carbon, hydrogen, nitrogen, oxygen, and sulfur.
Even factoring in their possibility of synthesis and realistic chemical and physical properties still
Jeaves on the order of 10'® compounds to consider. How, then, does one choose which 10*
compounds should be included in the first library, or the second?

A final strategy to enhance molecular diversity results from computer programs that design
molecules to meet specified three-dimensional criteria, typically based on the experimental structure of
a protein binding site (Rothstein and Murcko, 1993). The programs design molecules to meet
geometric criteria and include electrostatic complementarity at the level of force. fields such as those
used for molecular dynamics. The diversity arises from the combinatorics: a protein binding site
usually contains at least four or five hydrogen-bonding or charged groups; a ligand might interact
with most or all of them, and many different templates might be able to fit into the binding site and
orient polar groups for optimal interaction. Hence, it is expected that a huge number of nicely fitting
molecules might be designed. Although design programs could be set up to produce only those
molecules that could be synthesized readily, this severely limits the diversity. Hence, it is likely that
the designed molecules will have to be made by traditional synthesis. This places a realistic upper
limit of 25 molecules to be selected. Even if binding affinity could be forecast precisely, we are a
long way from forecasting every type of toxicity or drug metabolism quirk that a molecule might
possess. Again, we face the problem of selection of the most diverse sample from a population.

Current Computational Approaches to Compound Selection

There are three aspects to the problem of selecting samples from large collections of molecules:
First, what molecular properties will be used to describe the compounds? Second, how will the
similarity of these properties between pairs of molecules be quantified? Third, how will the
molecules be grouped or clustered?

For datasets of size 10* and higher, the standard method of describing the molecules for clustering
encodes the presence or absence of substructural features in a bit-string, typically of length 256-1024
(Willett, 1987; Hodes, 1989). In modern systems, these substructural features are recognized by
enumerating all paths of length 0-7 in the molecular graph and using these to populate one or more of
the bits (Weininger et al., 1994). It typically takes one to two hours on a modern workstation to
generate such fingerprints of a database of 10° compounds. The time required for this process
increases linearly with the number of compounds.
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The second step is to calculate the similarity of every molecule to every other molecule in the
dataset. The similarity measure traditionally used, the Tanimoto coefficient, is expressed as

Simu = _.¢_’
Fi+F;+F;

where Sim; is the similarity of molecule i to molecule j, F; is the number of features (bits set to 0 or
1) in common between molecule i and molecule j, F, is the number of bits set in molecule i, and F;is
the number of bits set in molecule j. For the same 10° compounds, this process takes on the order of
24 hours. Since every molecule is compared with every other, it scales as the square of the number
of compounds. Lastly, the Jarvis-Patrick clustering method (Jarvis and Patrick, 1973) is used to
group the compounds. This method is based on comparing the nearest neighbors of compounds and
is very fast, taking only seconds to accomplish. Although each of these steps is feasible, none is
optimal.

Opportunities for Improvements in Computational Approaches to Compound Selection
Molecular fingerprints are not the best descriptor to use to select compounds for bioactivity since

the biological properties of compounds depend on their three-dimensional complementarity of shape

and electronic properties with those of the target biomolecule. Clearly, we would like to consider the
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three-dimensional structures of the molecules—shape, the location of intermolecular recognition sites
such as hydrogen-bonding or charged groups, and the way in which the position of these features
changes with changes in conformation. Speeding up such calculations or representations of the results
would be a big help.

However, the problem of how to represent conformational flexibility in this context is a bigger
challenge—do we need a totally different way to represent the structures than coordinates or distances
between pairs of atoms? It is important to recognize that two-dimensional molecular structure is the
basis of both chemical synthesis strategy and patent claims, and so the representation must also
include the two-dimensional structure. This is a clear example where the choice of model is
significant and must be the result of close collaboration between mathematical and chemical scientists.

Any new molecular descriptor will require that one define a corresponding metric for the similarity
or distance between compounds to be used in grouping them. For example, in contrast to
substructural features, which are either present or absent, distances are continuous and do not fall so
easily into a bit-string. Should distances be binned—if so, should the bins be fuzzy or overlapping?
How is similarity evaluated in such cases?

On the other hand, one might quantitate the similarity of two molecules by the size and
composition of the maximum common substructure. Experience with the Bron-Kerbosh algorithm
(Bron and Kerbosh, 1973) has shown a rate of 10° comparisons per hour. For a dataset of size 10°, it
would take 10 comparisons or 10* hours to prepare the similarity matrix! Similarly, 10® molecules
would require 10'> comparisons and 10° hours. Although parallelization might allow one to perform
the calculations, a better algorithm might accomplish the same thing with greater efficiency. It might
be possible to eliminate most of the comparisons while retaining all important ones.

Improvements in the grouping of compounds are sorely needed. The Jarvis-Patrick algorithm
performs poorly on sets of very diverse compounds. For example, a typical result produces a few
large clusters, each containing very different compounds, and many singletons. There are sometimes
clusters that contain compounds with a similarity of 0.2 on a scale of 0.0 to 1.0, with 1.0 the upper
limit. Clearly, this is not clustering similar compounds together.

Much better results are found, albeit with datasets of 1000, by using statistically based
agglomerative clustering methods. For 1000 compounds, the clustering takes approximately one day
and would scale roughly as the square of the number of compounds. Since we typically would expect
to investigate no more than 1/100 as many clusters as original compounds, divisive methods might
have an advantage because in this approach, clustering starts with one huge cluster, divides clusters
into tighter ones, and could stop once the target number of clusters was formed.

At this time, no method other than Jarvis-Patrick is known to the computational chemistry
community that will group 10° or 10° objects in a time scale of less than a week (Willett et al., 1986;
Willett, 1987; Whaley and Hodes, 1991). There are unpublished reports that the divisive Guenoche
(1991) algorithm classifies 10* compounds overnight on a personal computer once the pairwise
similarities have been calculated. However, it seems possible that there may be better ways to
discover the groups of compounds in a dataset.
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Statistical Analyses of Families of Structures

The diversity of chemical structures is one of the hallmarks of modern experimental chemistry.
The problems of diversity and similarity are most prevalent in the study of biological molecules for
which very different sequences—that is, fundamental structures—give rise to molecules that have very
similar overall three-dimensional structures and often very similar functional properties. The Human
Genome Project is devoted to characterizing the myriad of proteins encoded in humans, but a still
larger universe of proteins exists in other living beings. Furthermore, it is easy to understand that the
existing proteins are just a small subset of all possible random heteropolymers. The same type of
combinatorial complexity exists for many other classes of molecules. In nature, we are familiar with
the complexity of alkaloids or terpenes.

More and more molecular scientists are trying to understand how to use the information from a
variety of different molecules to understand the structure and function of a given one. It is now
becoming possible, by using combinatorial syntheses in the laboratory, to make 10 million variants of
a single protein or 10,000 covalently connected frameworks such as those in a natural product. The
most well known of these techniques is that employed to make catalytic antibodies, but many other
approaches are possible. A variety of mathematical problems arise when one tries to make use of
these resulting longitudinal data about molecular systems.

For naturally occurring biomolecules, one of the most important approaches is to understand the
evolutionary relationships between macromolecules. This study of the evolutionary relationship
between biomolecules has given rise to a variety of mathematical questions in probability theory and
sequence analysis. Biological macromolecules can be related to each other by various similarity
measures, and at least in simple models of molecular evolution, these similarity measures give rise to
an ultrametric organization of the proteins. A good deal of work has gone into developing algorithms
that take the known sequences and infer from these a parsimonious model of their biological descent.

Similar analyses based on the three-dimensional structure of molecules also present ongoing
mathematical problems. At the moment, the use of evolutionary similarity to infer three-dimensional
structure is a common and very important algorithm for people who have practical interests in the
prediction of biomolecular structure. Use of the theory of spin glasses to characterize random
heteropolymers has also allowed the phrasing of interesting questions such as the probability in a
single experiment of obtaining a foldable protein molecule. This is a question in which the statistics
of low-lying energy states on the surface and the statistics of sequences must be analyzed jointly and
related to each other. Experiments of this type have recently been done and seem to agree in many
respects with the results of theory, but there are many questions of physicochemical principle and of
mathematical analysis for this theory.

An emerging technology is the use of multiple rounds of mutation, recombination, and selection to
obtain interesting macromolecules or combinatorial covalent structures. Very little is understood as
yet about the mathematical constraints on finding molecules in this way, but the mathematics of such
artificial evolution approaches should be quite challenging. Understanding the navigational problems
in a high-dimensional sequence space may also have great relevance to understanding natural
evolution. Is it punctuated or is it gradual as many have claimed in the past? Artificial evolution
approaches may obviate the need to completely understand and design biological macromolecules, but
there will be a large number of interesting mathematical problems connected with the design of
efficient artificial evolution experiments.
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Quantum Monte Carlo Solution of the Schrodinger Equation

Many-body problems in physics are often treated by a Monte Carlo (MC) approach (e.g.,
Hammersley and Handscomb, 1964; Kalos and Whitlock, 1986). The Monte Carlo method is
statistical and draws its name from the famous gambling casinos of Monaco because of the role of
random numbers or coin tosses in the method.

Problems handled by Monte Carlo are generally of two types, probabilistic or deterministic,
depending on whether they are connected with random processes. In the probabilistic case, the
simple Monte Carlo approach is to observe the occurrence of random numbers, chosen in a way that
they directly simulate the physical random processes of the original problem, and to infer the desired
solution from the behavior of these random numbers. In the deterministic case, the power of the
Monte Carlo approach is the capability of carrying out numerical calculations in cases where the
equations that describe the essence of a problem and its underlying structure are not solvable by
alternative means. The underlying structure or formal expression also describes some unrelated
random process, and therefore the deterministic problem can be solved numerically by a Monte Carlo
simulation of the corresponding probabilistic problem.

The essential feature common to all Monte Carlo computations is that at some point one will need
to substitute for a random variable a corresponding set of values with the statistical properties of the
random variable. The values that are substituted are called random numbers. They are not really
random, however, because if they were it would be impossible to repeat a particular run of a
computer program. An absolute requirement in debugging a computer code is the ability to repeat a
particular run of the program. If real random numbers were used, no calculation could be repeated
exactly, and attempts to check for errors would be extremely difficult. It is essential that one be able
to repeat a calculation when program changes are made or when the program is moved to a new
computer.

For electronic computation it is desirable to calculate easily by a completely specified rule a
sequence of numbers as required that will satisfy reasonable statistical tests for randomness for the
Monte Carlo problem of interest. Such a sequence is called pseudorandom and clearly cannot pass
every possible statistical test.

Most of the pseudorandom number generators now in use are special cases of the relation
(Heermann, 1986; Kalos and Whitlock, 1986)

Xyoq = G, v Q%+ rax,  +b  (mod P).

One initiates the generator by starting with a vector of j + 1 numbers x, x;, . . . , X, The generators
are characterized by a period 7 that in the best case cannot exceed P/*!. The length of 7 and the
statistical properties of the pseudorandom sequences depend on the values of a;, b, and P.

With the choice of ¢; = 0, j = 1, and b = 0, one obtains the multiplicative congruential
generator,

X ., = A'X (mod P).

n+1 n

Recent work has shown that a set of parameters A and P can be chosen with confidence to give
desired statistical properties in many-dimensional spaces (Kalos and Whitlock, 1986). There are
many other generators available; the interested reader should consult the references.

With parallel computers and supercomputers capable of very large calculations, very long
pseudorandom sequences are necessary. In addition, there remains the desire to have reproducible
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runs. The question of independence of separate sequences to be used in parallel remains a research
issue.

Quantum Monte Carlo (QMC), as used here, refers to a set of methods to solve the Schrédinger
equation (exactly, in two of the three variants listed below) to within a statistical error by random
walks in the many-dimensional space. These methods—variational MC, diffusion MC, and Green’s-
function MC—are based on the formal similarity between the Schrodinger equation in imaginary time
and a multidimensional classical diffusion equation.

Variational Monte Carlo (VMC)

For ¥ (R) a known approximate (trial) wavefunction, where R is the 3N set of coordinates of the
N-particle system, VMC (Kalos and Whitlock, 1986; Hammond et al., 1994) uses the Metropolis
algorithm (Hammersley and Handscomb, 1964; Heermann, 1986; Kalos and Whitlock, 1986;
Hammond et al., 1994) to sample | ¥;|>. Therefore, any expectation value with respect to this trial
function can be computed including the variational energy of ¥;. To begin a calculation, an initial
distribution of walkers is generated. In order to create a distribution of | ¥;|?, these walkers take a
series of Metropolis steps to equilibrate, followed by another series of Metropolis steps at which the
local energy

Elocal = HTT(R)/ II'T(R)

is calculated for each walker; here H is the Hamiltonian. Averaging the local energy over the
walkers at the sampling points yields the variational energy, which is an upper bound to the exact
energy of the ground state. An alternative strategy is to minimize the variance of the local energies.
A strength of the VMC method is the capability of treating trial functions that depend explicitly on
interelectronic coordinates—there is no integral problem associated with the use of trial functions
containing such coordinate dependence for many-electron systems.

Diffusion Monte Carlo (DMC)
If one multiplies the time-dependent Schrodinger equation in imaginary time by ¥rand rewrites it
in terms of a new probability distribution f(R,t) = | ®(R,£)¥(R), one obtains

313t = ¥ DN,V - fVin B[ - (BB - EY,

where D; = #*/2m;, E, is the local energy, and E; (the trial energy) represents a constant shift in the
zero of energy. At large simulation (imaginary) time, the function ®(R,?) tends to the ground state
wavefunction.

The algorithm (Hammond et al., 1994) is initiated with a distribution (ensemble) of several
hundred walkers taken from f(R,0) = | ¥(R)|? which is then evolved forward in time after a
sequence of equilibration steps. The three terms on the right-hand side then correspond to diffusion
with diffusion constant D,, a drift term associated with the trial function, and a branching term that
derives this designation from the DMC equation being, in the absence of the first two terms on the
right-hand side,a first-order kinetic equation. Because f can, in general, assume both positive and
negative values, which would preclude the interpretation of f as a probability for fermion systems,
one alternative is to impose the nodes of the ground state wavefunction ¥ on ¢ so that f is always
positive. This is the fixed-node approximation, which can be shown to give an upper bound to the
ground state energy.
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After sufficiently long simulation time in which the steady-state solution of the DMC equation has
been attained, the ground state energy is obtained as the average value of the local energy now
averaged over the mixed distribution ®(R)¥.(R). This is an improvement over VMC and associated
sampling from | ¥.|? because DMC contains information on the exact ground state ® (in the fixed-
node approximation). The ground state energy has the zero-variance property of QMC; that is, in the
limit that ¥, approaches &, the variance of the MC estimate of the energy approaches zero.

Green’s Function Monte Carlo (GFMC)

The integral equation form of the Schrodinger equation can also be modeled by a stochastic
process, which leads immediately to the consideration of Green’s functions. GFMC approaches
(Kalos and Whitlock, 1986) have been investigated for the time-independent as well as the time-
dependent Schrodinger equations. In practice, however, there are only convergent when the Fermi
energy is close to the Bose energy and the trial function has sufficiently accurate nodes. New
directions with GFMC that overcome these limitations still encounter limitations that restrict their
application, at present, to first-row atoms. Nevertheless, GFMC remains an area for continued
scrutiny.

Research Opportunities

The various forms of Monte Carlo for solving the Schrodinger equation (VMC, DMC, and
GFMC) could each be improved by better sampling methods. Wavefunctions typically used for
importance sampling often recover at best 80 to 95% of the correlation energy, the energy difference
between the Hartree-Fock approximation and the nonrelativistic limit, for molecules consisting of
first-row atoms. Beyond the first row, computer time dependence on atomic number, which has been
estimated as z* where o = 5.5 to 6.5, is a major limiting factor that has led to the introduction of
analytical functions to describe inner-shell electrons (i.e., pseudopotentials or effective core
potentials). Another area in which improvements are eagerly sought is in methods that go beyond the
fixed-node approximation. Currently, these methods are limited to atoms and molecules containing
no more than 6 to 10 electrons.
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Nonadiabatic Phenomena®

The Born-Oppenheimer (BO) adiabatic approximation is the basis of the well-known separation of
the many-body problem of electronic and nuclear motion into two separate many-body problems. It is

This presentation follows Hirschfelder and Meath (1967).
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also applied to separate other "fast" and "slow" subsystems including vibrational and rotational modes
of molecules. The combination of these approximations leads to the double adiabatic approximation
that has been applied in the study of solids as well as molecules.

For most applications, the approximation of separation of electronic and nuclear motion does not
lead to appreciable error. For high precision, however, the BO energy has to be corrected for the
coupling of electronic and nuclear motions. The coupling is important if, for example,

e two potential energy surfaces of the same symmetry cross in the BO approximation— correction
terms prevent such crossings—or are close and more-or-less parallel over a moderate range of
configuration space;

e the electronic state of a polyatomic molecule is degenerate for a symmetric arrangement of
nuclei; coupling leads to Jahn-Teller and Renner-Teller effects;

¢ the nuclear velocities are large as in high-energy molecular collisions;

¢ the molecule is in a high rotational state and has nonzero electronic angular momentum.

There are two kinds of correction terms for the coupling of electronic and nuclear motions. The
diagonal corrections shift the energy levels. The nondiagonal corrections produce and broaden the
natural line width to the energy levels and cause transitions between quantum states. The energy
corrected for the diagonal coupling terms is called the adiabatic energy and gives the best possible
energy curves and surfaces.

A number of problems arise in the inclusion of nondiagonal corrections. They occur because of
divergences in coupling matrix elements in regions where potential energy surfaces approach very
closely or because the BO electronic basis functions may not be appropriate for the region of close
approach.

BO deviations arise for two reasons. First, coupling terms appear in the kinetic energy when the
coordinates are transformed from the laboratory-fixed axes to the body-fixed (molecular) axes.
Second, the Breit-Pauli relativistic corrections to the electrostatic Hamiltonian lead to spin-spin, spin-
orbit, and other magnetic coupling terms. The present discussion neglects the latter and focuses on
the former.

The Hamiltonian in the laboratory-fixed frame may be written

H'=“—;'[Z V’1'2 + E V’txz/ma] + U, (21)

where primes denote the laboratory frame, m, is the mass of the «-th nucleus in units of electron
mass, and U is the potential energy given by the Coulomb interactions (nuclear, electronic-nuclear,
and electronic) of all the particles of the system. Since U is a function only of relative distances
between the particles, one separates out the center-of-mass motion and is left with 3(n+N) — 3
relative coordinates for an n-electron and N-nucleus molecular system. The choice of optimum
coordinates for polyatomic molecules is not straightforward, and so the focus here, for simplicity, is
on the diatomic molecule case. Then the Hamiltonian takes the form

H = H,-Vi@w-2 X V2 Y Y, V), @2)

i<j

where p = m,* m,/(m, + m,) and
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Here Z, and Z, are the nuclear charges, r, is the distance separating nucleus a from electron i, and R
is the distance between nuclei a and b.
If one assumes that the electronic Schrodinger equation,

H,y, (r,R) = E,(R)y(r,R), 24

can be solved exactly for the complete set of eigenfunctions y,(r,R) and eigenvalues E,(R), then the
total Schrodinger equation for nuclear and electronic motions,

HY¥(r,R) = E¥(r,R), (25)
can be solved by expanding ¥ as follows,
¥(rR) = ) RYr.R). (26)
k

Here r represents all the coordinates of the electrons and k is the set of electronic quantum numbers.
This leads to a set of equations for the functions ¢,(R) that determine the nuclear motion of the
system,

[-V/2p) + E(R) + E,/(R) + E,(R) - Vg - E] §(R)

= Y B,/ (R) + By (R) Vil ). @n
k#{
Here
E,/(R) = E,/(V) + B (V,'V) + E (VD),
where
Ey (Ve) = 1@ [, &R Vi Rydr,
Ey (V) = -120m, +m) Y [ Wi, RV ¢, Ry dr,
Ey (V) = Y (m,+m)Y. [4; RV, Vg, (r,R)dr,
i<j
and
Ey'® = -1u [y, "R Vet r,R)dr . 28)

An asterisk denotes complex conjugate. The quantities defined by Equation (28) give rise to velocity-
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dependent forces on the nuclei. For real y,, however, the diagonal term vanishes.

In practice, Equation (27) is extremely difficult to solve and various approximations to it are
introduced. The BO approximation corresponds to neglecting all of the coupling terms. Equation
(27) then becomes a Schrodinger equation for nuclear motion,

[-U/CR) Vg + E(R)-E]¢(R) = 0.

In this approximation, the E,(R) determined from Equation (24) become the potential energy for the
nuclear motion.

The adiabatic approximation corresponds to neglecting all nondiagonal terms in Equation (27),
which results in a Schrodinger-type equation for nuclear motion,

[-1/2p) Vg’ + V(R) -El$p/R) = 0,

where the potential for nuclear motion is

V(R) = E(R) +E,(R) .

The diagonal elements E,,"(R) are effectively a correction to the potential energy due to the coupling
between the electronic and nuclear motions.

The adiabatic approximation gives the best potential energy function. As defined here the
adiabatic approximation to the energy is an upper bound to the true energy since it can be expressed
as the expectation value to the correct Hamiltonian for the molecule evaluated with an approximate
wave function.

The nonadiabatic approximation corresponds to consideration of the nondiagonal as well as the
diagonal elements E,,"(R). This is extremely difficult to carry out but has been accomplished for H,
by using variational basis set (Kolos and Wolniewicz, 1960) and quantum Monte Carlo approaches
(Traynor et al., 1991; see also Ceperly and Alder, 1987).

For processes occurring in excited states, it appears clear that for molecules more complicated than
H, alternative approaches must be found. This is an area demanding fundamental improvements if
breakthroughs are to be achieved.
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Evaluation of Integrals with Highly Oscillatory Integrands:
Quantum Dynamics with Path Integrals
The solutions of many quantum dynamics problems can be formulated in terms of path integrals.

Indeed, there is a formulation of quantum mechanics (less familiar than the Schrédinger wave function
formulation, the Heisenberg matrix formulation, or the Dirac Hilbert space formulation) based
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entirely on the use of path integrals (Feynman and Hibbs, 1965). Path integrals are closely related to
some of the mathematical approaches used to describe classical Brownian motion. A prototypical
mathematical problem and a class of methods for solving it are described first; then a more general
discussion of the problem is presented.

Prototypical Problem

This discussion of the prototypical problem follows closely the discussion of Doll et al. (1988).
Consider the integral I(f) = { dx p(x) ¢”™ where ¢ is a real parameter corresponding to the time, x is
the set of coordinates for a many-dimensional space, and p(x) and f(x) are functions in that space.
The function p(x) is positive semidefinite and can without loss of generality be taken as normalized to
unity. Thus, it can be regarded as a probability density in the space. The function f{x) is real (for
this prototype problem).

For problems of interest, the dimensionality of the space can be very large (from 1 to a hundred to
thousands), and the complexity of the function precludes analytic integration. For any particular x,
p(x) and f{x) can be evaluated numerically, and typically there is much more computation required for
the evaluation of p than f.

The range of the x integration may be bounded, but more often it is unbounded. For typical
problems of interest, however, integrals of the form § dx p(x) (f(x))" exist for all positive integers #.

The goal is usually to evaluate the integral for a specific value of ¢ (or for a set of values of f) by
making use of calculated values of p and f at appropriately chosen points and to estimate the accuracy
of the answer. In some cases, the desired quantity is the area under the function

f W OR
or perhaps the Fourier transform
[ty

Techniques for evaluation of such integrals of  would be extremely worthwhile, but this discussion
focuses on the evaluation of I(#) for specific values of ¢.

Discussion of the Problem
A standard way of attacking this problem would be a Monte Carlo integration scheme in which
points x are generated with a probability distribution of p(x) and f is evaluated at these points. Then

1 ifflx,)
It =~ =Y 7%,
Nzl

where N points are generated and x, is the nth point. For small values of ¢, this can be a practical
procedure. For large values of ¢, however, this procedure is extremely inefficient because of the
large amount of cancellation among the various terms.

If ¢ is large and f is not a constant, it is clear that the integrand is highly oscillatory; thus, small
regions of space where f is varying will tend to contribute small net amounts to the integrand for large
t. Nevertheless, individual points in such a region will contribute to the sum an exponential whose
magnitude is unity. Cancellation among the various terms will give an accurate and small answer
only when each such small region is sampled many times in the Monte Carlo evaluation.
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The regions of the space in which df{x)/dx is zero or small will make the major contributions to
the integral for large £. Thus, a scheme that concentrates the Monte Carlo sampling at and near such
regions would be desirable. Such schemes are usually called "stationary-phase” methods, since at
such points the phase of the exponential is stationary.

Stationary-Phase Monte Carlo Methods

A variety of sampling methods have been developed that focus on the stationary-phase points
(Doll, 1984; Filinov, 1986; Doll et al., 1988). Here the approach of Doll et al. (1988), which is
similar to the others, is outlined.

The integral of interest can be rewritten identically as

I = f dx p(x)D(x,f) e ™, 29)

where

Dxp) = | dyP(y)%’leit[ﬂx—y) o1,

and P(y) is an arbitrary normalized probability distribution. (This result is exact if the range of
integration is over all positive and negative values of the integration variables.) The function P(y) is
typically chosen to be a Gaussian distribution centered at y = 0. D(x,?) is called a "damping
function," because for such a typical choice of P(y), D(x,?) is largest where f is stationary and hence
it damps the integrand in Equation (29) away from the stationary points.

An evaluation of D(x,t) poses the same problems as evaluation of I(z). However, for specific
choices of P, various approximations for D can be constructed and used as the basis for a more
efficient sampling method for the evaluation of 1. For example, if P(y) is a narrow Gaussian function
with a maximum at y = 0, then for large ¢ an approximation can be constructed by replacing p(x —
y)/p(x) by unity and performing a Taylor expansion of the exponent. One then obtains an
approximation for D called the "first-order gradient approximation":

D(x,) = Dy(x,H) = exp[-(etff (x))’/2)].
Then

1) = f dx p(x) Dy(x,0)e"™.

This integral, which is the major contribution to the correct answer, is generally more amenable to
evaluation by sampling, in this case by using p(x)D,(x,t) as the probability distribution. A complete
method would require the development of procedures to estimate the correction terms that must be
added on the right to make this an equality (see Doll et al., 1988, for additional details). The
essential idea of these procedures is that use of a precise approximate formula for D automatically
includes much of the cancellation responsible for decreasing the value of .

The stationary-phase Monte Carlo methods provide some useful ideas for formulating tractable
sampling methods for solving some problems of interest. It would be worthwhile to develop better
versions of these methods both for I(t) and for its Fourier transform.
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Alternative Approaches to the Prototype Problem

In many cases of interest, the function I(¢) is known to be an analytic function of ¢ at the origin.
This knowledge may be of use in developing approximate evaluation techniques based on analytic
continuation. Most analytic continuation methods are based on a more detailed formulation of the
problem of interest that is tied closely to the physical nature of the problem. But even for this simple
formulation of the prototype problem, one might ask whether the fact that I(z) is an analytic function
of (complex) ¢ for some region that includes the origin suggests any alternate ways of calculating I(2)
accurately.

For example, one might consider the use of Padé approximants (i.e., ratios of polynomials; Baker
and Gammel, 1970), which are often used for approximate analytical continuation of analytic
functions, especially meromorphic functions. Expanding the exponential in I(s) gives

I0) = f: @ity a,/n!,
n=0

where
o, = [dx p®) A"

The first few Taylor series coefficients can then be estimated by sampling on p(x) in the usual way,
but the difficulty of making accurate estimates grows as n increases. These coefficients might then be
used to fit /(z) with a Padé approximant.

This approach raises a number of mathematical questions.

®  Are there any sampling techniques that would be especially effective in evaluating the
coefficients for large n?

®  Does the statistical error in the «, make it inappropriate to use Padé approximants to fit the
function? Are there better alternatives?

e If the Padé approximant method is valid, how is the uncertainty in I(#) related to the statistical
uncertainty of the individual «,?

®  Does the fact that the integral expression for I(¢) is dominated by stationary points in the x
space give any insights into how to evaluate e, or how to construct appropriate Padé
approximants?

Other Formulations and Solutions of the Basic Problem

The nature and dimensionality of the x space and the specific form of the p(x) function are
determined by the nature of the quantum mechanical problem to be solved. In general, however, the
coordinates of x are Cartesian (or other) coordinates for a mechanical system. Similarly, the form of
the function f{x) is determined by the nature of the problem. Various analytic continuation techniques
have been applied to attack specific special cases of the prototype problem. The question then arises
as to whether these are isolated solutions of specific problems or special cases of an underlying, not
yet discovered, general method for solving problems of this type. This is not the place to delve into
the details of specific problems; instead, some of the relevant mathematical principles involved are
highlighted. For additional discussion of related problems, the reader is referred to Doll (1984),
Makri (1991), and Wolynes (1987).
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Analytic Continuation in Time. In some problems, the goal is to evaluate a function of time ¢ of the
form

g(it,x)
h(t) = M . 30)
f dx €8
More generally, there is a function of a complex variable z of the form
8(z%)
H() = M (31)
f dx 8@

that is analytic in a region including the positive real axis and part of the positive imaginary axis, and
for which A(t) = lim_,, H(e + it). The function g(z,x) is an analytic function of all its arguments,
and f(x) is real (for real x). In many cases, the formulation in Equation (31) is required to make the
problem well defined, because g(it,x) is purely imaginary and the integrals in Equation (30) are not
absolutely convergent (for an infinite range of integration).

The calculation of H(z) for real z presents a tractable sampling problem because g(z,x) is real for
real z. Then, sampling a set of points distributed with a probability density proportional to g(z,x) and
calculating f at those points allow H to be calculated for real z. In fact, as long as z has a positive
real part, the problem of evaluating H can be converted to a well-defined sampling problem, because
Rg(z,x) - — oo for large positive and negative values of the integration variables. Then Rg(z,x) can
be used as a probability distribution, and the right side of Equation (31) can be expressed as a ratio of
two averages over this distribution:

f dx e 8@ i35 A(%)

f dx e %8@) ¢i%@x)

f dx e #8@®) @D £y | f dx e #8&%)
) f dx e F8@ o186 f dx e #8@®) ’

H(z) =

For complex values of z, however, this sampling problem may become intractable because the
quantities to be averaged, exp [i¥g(z, x)] f(x) and exp[ig(z,x)], are complex and oscillatory. This
can pose the same difficulty as that discussed for the prototypical problem above. This difficulty
becomes acute in the limit that z becomes purely imaginary, because the "probability distribution
function" approaches unity and is not normalizable.

A variety of analytic continuation methods have been used to solve problems of this type. One
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